Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bioelectronic sensors

Fig. 9.13 Electrochemical detection of nucleic acid with the bioelectronic sensor based on a sandwich assay. A target nucleic acid is shown to anneal to a capture probe and a ferrocene-labeled signaling probe [58]. The thiol-terminated oligophenylethynyl molecules serve as molecular wires and provide a... Fig. 9.13 Electrochemical detection of nucleic acid with the bioelectronic sensor based on a sandwich assay. A target nucleic acid is shown to anneal to a capture probe and a ferrocene-labeled signaling probe [58]. The thiol-terminated oligophenylethynyl molecules serve as molecular wires and provide a...
Kakehi N, Yamazaki T, Tsugawa W, Sode K. 2007. A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell. Biosens Bioelectron 22 2250-2255. [Pg.632]

Lukosz W., Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing, Biosens. Bioelectron. 1992 6 261-289. [Pg.400]

Uithoven K.A., Schmidt J.C., Ballman M.E., Rapid identification of biological warfare agents using an instrument employing a light addressable potentiometric sensor and a flow-through immunofiltration-enzyme assay system, Biosens. Bioelectron. 2000, 14 761-770. [Pg.453]

J.K. Park, P.H. Tran, J.K.T. Chao, R. Ghodadra, R. Rangarajan, and N.V. Thakor, In vivo nitric oxide sensor using non-conducting polymer-modified carbon fiber. Biosens. Bioelectron. 13, 1187—1195 (1998). [Pg.48]

G. Jeanty and J.L. Marty, Detection of paraoxon by continuous flow system based enzyme sensor. Biosens. Bioelectron. 13, 213-218 (1998). [Pg.75]

J. Di, S. Bi, and M. Zhang, Third-generation superoxide anion sensor based on superoxide dismutase directly immobilized by sol-gel thin film on gold electrode. Biosen. Bioelectron. 19, 1479-1486 (2004). [Pg.207]

A. Poghossian, M.H. Abouzar, F. Amberger, D. Mayer, Y. Han, S. Ingebrandt, A. Offenhauser, and M.J. Schoning, Field-effect sensors with charged macromolecules characterisation by capacitance—voltage, constant capacitance, impedance spectroscopy and atomic-force microscopy methods. Biosens. Bioelectron. 22, 2100-2107 (2007). [Pg.234]

X.L. Su and Y.B. D, Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens. Bioelectron. 21, 840-856 (2005). [Pg.282]

B. Wolf, M. Brischwein, W. Baumann, R. Ehret, and M. Kraus, Monitoring of cellular signalling and metabolism with modular sensor-technique the PhysioControl-Microsystem (PCM ) Biosens. Bioelectron. 13, 501-509 (1998). [Pg.402]

Z. Xu, X. Chen, X. Qu, J. Jia, and S. Dong, Single-wall carbon nanotube-based voltammetric sensor and biosensor. Biosens. Bioelectron. 20, 579—584 (2004). [Pg.522]

J. Yu, S. Liu, and H.X. Ju, Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Biosens. Bioelectron. 19, 509-514 (2003). [Pg.550]

A.K. Singh, A.W. Flounders, J.V. Volponi, C.S. Ashley, K. Wally, and J.S. Schoeniger, Development of sensors for direct detection of organophosphates. Part I immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. Biosens. Bioelectron. 14, 703-713 (1999). [Pg.550]

Heideman, R. G. Kooyman, R. P. H. Greve, J., Immunoreactivity of adsorbed antihuman chorionic gonadotropin studied with an optical wave guide interferometric sensor, Biosens. Bioelectron. 1994, 9, 33 43... [Pg.293]

Zourob, M. Mohr, S. Treves Brown, B. J. Fielden, P. R. McDonnell, M. B. Goddard, N. J., Bacteria detection using disposable optical leaky waveguide sensors, Biosens. Bioelectron. 2005,21,293 302... [Pg.439]

I. Yaropolov, and A. P. Savitsky, Phosphorescent polymer films for optical oxygen sensors, Biosensors Bioelectronics 7, 199-206 (1991). [Pg.293]

D. Pfeiffer, F. W. Scheller, C. J. McNeil, and T. Schulmeister, Cascade like exponential substrate amplification in enzyme sensors. Biosensors Bioelectron., 10, 169-180 (1995). [Pg.142]

Guo Z, Giulfoyle RA, Thiel AJ, Wang R, Smith LM (1994) Nucleic Acids Res 22 5456 Hilliard LR, Zhao X, Tan W (2002) Anal Chim Acta 470 51 Moser 1, Schalkhammer T, Pittner F, Urban G (1997) Biosens Bioelectron 12 729 Pividori Ml, Merkoci A, A1 egret S (2000) Biosens Bioelectron 15 291 Cloarec JP, Deligianis N, Martin JR, Lawrence 1, Souteyrand E, Polychronakos C, Lawrence MF (2002) Sensors and Actuators B Chemical 58 405 Cloarec JP, Martin JR, Polychronakos C, Lawrence 1, Lawrence MF, Souteyrand E (1999) Sens Actuators, B 58 394... [Pg.185]

Naimushin, A. N., Soelberg, S. D., Nguyen, D. K., Dunlap, L., Bartholomew, D., Elkind, J., Melendez, J., and Furlong, C. E. (2002). Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-charmel surface plasmon resonance (SPR) sensor. Biosens. Bioelectron. 17, 573-584. [Pg.40]

Mottram, T., Rudnitskaya, A., Legin, A., Fitzpatrick, J. L., and Eckersall, P. D. (2007). Evaluation of a novel chemical sensor system to detect clinical mastitis in bovine milk. Biosens. Bioelectron. 22(11), 2689-2693. [Pg.114]

Riul, A., Malmegrim, R. R., Fonseca, F. J., and Mattoso, L. H. C. (2003b). An artificial taste sensor based on conducting polymers. Biosens. Bioelectron. 18(11), 1365-1369. [Pg.115]

Sohn, Y.-S., Goodey, A., Anslyn, E. V., McDevitt, J. T., Shear, J. B., and Neikirk, D. P. A. (2005). Microbead array chemical sensor using capillary-based sample introduction Toward the development of an "electronic tongue". Biosens. Bioelectron. 21(2), 303-312. [Pg.116]

Interest in these studies arises from fundamental research where monolayers serve as models of biomimetic systems, as well as from important apphcations of such systems in molecular and bioelectronic devices, in sensors constructions, corrosion/inhibition phenomena, and synthesis of nanostructures... [Pg.853]

Liu J, Bjornsson L, Mattiasson B (2000) Immobilised activated sludge based biosensor for biochemical oxygen demand measurement. Biosens Bioelectron 14 883-893 Sakai Y, Abe Y, Takahashi F (1995) BOD sensor using magnetic activated sludge. J Ferment Bioeng 80 300-303... [Pg.113]

Kim M-N, Kwon H-S (1999) Biochemical oxygen demand sensor using Serratia marcescens LSY 4. Biosens Bioelectron 14 1-7... [Pg.113]

Heim S, Schmieder 1, Binz D, Vogel A, Bilitewski U (1999) Development of an automated microbial sensor system. Biosens Bioelectron 14 187-193... [Pg.114]

Chan C, Lehmann M, Tag K, Lung M, Kunze G, Riedel K, Griindig B, Renneberg R (1999) Measurement of biodegradable substances using the salt-tolerant yeast Arxula adeninivorans for a microbial sensor immobUized with poly(carbamoyl)sulfonate (PCS). Part I Construction and characterization of the microbial sensor. Biosens Bioelectron 14 131-138... [Pg.114]

Li F, Tan TC (1994) Monitoring BOD in the presence of heavy metal ions by a poly(4-vinylpyridine) coated microbial sensor. Biosens Bioelectron 9 445 - 455... [Pg.115]

Konig A, Riedel K, Metzger JW (1998) A microbial sensor for detecting inhibitors of nitrification in wastewater. Biosens Bioelectronics 13 869-874... [Pg.115]

Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13 931-938... [Pg.116]

Lehmann M, Riedel K, Adler K, Kunze G (2000) Amperometric measiuement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor. Biosens Bioelectron 15 211-219... [Pg.116]

Tan HM, Cheong SP, Tan TC (1994) An amperometric benzene sensor using whole ceU Pseudomonas putida ML2. Biosens Bioelectron 9 1-8... [Pg.117]


See other pages where Bioelectronic sensors is mentioned: [Pg.131]    [Pg.773]    [Pg.32]    [Pg.296]    [Pg.131]    [Pg.773]    [Pg.32]    [Pg.296]    [Pg.161]    [Pg.172]    [Pg.21]    [Pg.74]    [Pg.233]    [Pg.322]    [Pg.446]    [Pg.113]    [Pg.211]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Bioelectronics

© 2024 chempedia.info