Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bicarbonate decomposition

Equip a 1-litre three-necked flask with a powerful mechanical stirrer, a separatory funnel with stem extending to the bottom of the flask, and a thermometer. Cool the flask in a mixture of ice and salt. Place a solution of 95 g. of A.R. sodium nitrite in 375 ml. of water in the flask and stir. When the temperature has fallen to 0° (or slightly below) introduce slowly from the separatory funnel a mixture of 25 ml. of water, 62 5 g. (34 ml.) of concentrated sulphuric acid and 110 g. (135 ml.) of n-amyl alcohol, which has previously been cooled to 0°. The rate of addition must be controlled so that the temperature is maintained at 1° the addition takes 45-60 minutes. AUow the mixture to stand for 1 5 hours and then filter from the precipitated sodium sulphate (1). Separate the upper yellow n-amyl nitrite layer, wash it with a solution containing 1 g. of sodium bicarbonate and 12 5 g. of sodium chloride in 50 ml. of water, and dry it with 5-7 g. of anhydrous magnesium sulphate. The resulting crude n-amyl nitrite (107 g.) is satisfactory for many purposes (2). Upon distillation, it passes over largely at 104° with negligible decomposition. The b.p. under reduced pressure is 29°/40 mm. [Pg.306]

Ammonium bicarbonate, sp gr 1.586, formula wt 79.06, is the only compound in the NH —CO2—H2O system that dissolves in water without decomposition. SolubiUty in 100 g of H2O ranges from 11.9 g at 0°C to 59.2 g/100 g of H2O at 60°C (8). The heat of formation from gaseous ammonia and carbon dioxide andUquid water is 126.5 kj/mol (30.2 kcal/mol). Ammonium bicarbonate is manufactured by passing carbon dioxide gas... [Pg.362]

Manufacture. Aqueous sodium hydroxide, sodium bicarbonate, sodium carbonate, or sodium sulfite solution are treated with sulfur dioxide to produce sodium metabisulfite solution. In one operation, the mother Hquor from the previous batch is reinforced with additional sodium carbonate, which need not be totally in solution, and then is treated with sulfur dioxide (341,342). In some plants, the reaction is conducted in a series of two or more stainless steel vessels or columns in which the sulfur dioxide is passed countercurrent to the alkaH. The solution is cooled and the sodium metabisulfite is removed by centrifuging or filtration. Rapid drying, eg, in a stream-heated shelf dryer or a flash dryer, avoids excessive decomposition or oxidation to which moist sodium metabisulfite is susceptible. [Pg.149]

Buffers are frequently added to emulsion recipes and serve two main purposes. The rate of hydrolysis of vinyl acetate and some comonomers is pH-sensitive. Hydrolysis of monomer produces acetic acid, which can affect the initiator, and acetaldehyde which as a chain-transfer agent may lower the molecular weight of the polymer undesirably. The rates of decomposition of some initiators are affected by pH and the buffer is added to stabilize those rates, since decomposition of the initiator frequently changes the pH in an unbuffered system. Vinyl acetate emulsion polymerization recipes are usually buffered to pH 4—5, eg, with phosphate or acetate, but buffering at neutral pH with bicarbonate also gives excellent results. The pH of most commercially available emulsions is 4—6. [Pg.464]

Cosmetics and Toiletries. Citric acid and bicarbonate are used in effervescent type denture cleansers to provide agitation by reacting to form carbon dioxide gas. Citric acid is added to cosmetic formulations to adjust the pH, act as a buffer, and chelate metal ions preventing formulation discoloration and decomposition (213—218). [Pg.186]

The mauve colored cobalt(II) carbonate [7542-09-8] of commerce is a basic material of indeterminate stoichiometry, (CoCO ) ( (0 )2) H20, that contains 45—47% cobalt. It is prepared by adding a hot solution of cobalt salts to a hot sodium carbonate or sodium bicarbonate solution. Precipitation from cold solutions gives a light blue unstable product. Dissolution of cobalt metal in ammonium carbonate solution followed by thermal decomposition of the solution gives a relatively dense carbonate. Basic cobalt carbonate is virtually insoluble in water, but dissolves in acids and ammonia solutions. It is used in the preparation of pigments and as a starting material in the preparation of cobalt compounds. [Pg.377]

The noncondensable gases eventually reach the condenser (unless vented from an effect above atmospheric pressure to the atmosphere or to auxiliary vent condensers). These gases will be supplemented by air dissolved in the condenser water and by carbon dioxide given off on decomposition of bicarbonates in the water if a barometric condenser is used. These gases may be removed by the use of a water-jet-type condenser but are usually removed by a separate vacuum pump. [Pg.1147]

The aminoguanidine bicarbonate is pure enough for most purposes. It should not be recrystallized from hot water, since decomposition will occur. [Pg.9]

Sodium bicarbonate (VII) Inorganic C02 100-130 125-130 Low cost. Suitable for cellular rubber but insufficiently powerful for most plastics. Erratic in decomposition. [Pg.151]

By a procedure analogous to that described in the preceding experiment, octalone-2 (12 g, 0.08 mole, Chapter 9, Section III) in ether is added to methylmagnesium iodide in the presence of cuprous bromide (0.2 g). After decomposition with ice-acetic acid, extraction with ether, and washing of the ether extract, the ethereal solution is shaken with an equal volume (50-60 ml) of saturated aqueous sodium bisulfite for 3 hours. The mixture is filtered and the filtrate is reserved. The crystals are washed with ether. The filtrate is separated and the aqueous phase is combined with the filtered solid. The combination is acidified (dilute hydrochloric acid) and heated under reflux for 30 minutes. The product thus liberated is extracted into ether, the ether is washed with bicarbonate, then with saturated aqueous sodium chloride solution, and then dried and evaporated. The residual oil is the desired product, bp 250-254°. [Pg.145]

A solution of 1-piperazino ethyl acetate (Q2 mol) in benzene (300 ml) is treated with 3,4.5-trimethoxy cinnamoyl chloride (0,2 mol) in the presence of sodium bicarbonate (0.3 mol). After contacting for one hour at room temperature, the mixture is refluxed for a further hour. The benzene solution is then treated with an aqueous solution of sodium bicarbonate. After evaporation of the solvent, a solid product is obtained which is recrystallized from isopropyl ether. Melting point = 96°C. This base, when treated with hydrochloric acid, gives a hydrochloride having a melting point of 200°C with decomposition. By the action of malaic acid the acid maleate is obtained, having a melting point of 130°C. [Pg.343]

About 23 g (0.095 mol) of 1-ethyl-6,7 methylenedioxy-4(1H)-oxocinnoline-3concentrated hydrochloric acid and 200 ml of acetic acid. The resultant reaction mixture was heated under reflux for IB hours. The excess acids were removed under vacuum, and the residue was taken up in 150 ml of a 5% sodium bicarbonate solution. The resultant solution was treated with 5 g of charcoal and filtered. The filtrate was made acidic by the addition of hydrochloric acid and the resulting precipitate was removed by filtration. 23 g, representing a yield of 91.6% of 1-ethyl-6,7-methylenedioxy-4(1H)-oxocinnoline-3<arboxylic acid as light tan crystals which melted at 261°C to 262°C with decomposition were recovered. [Pg.346]

Carbon dioxide and calcium carbonate The effect of carbon dioxide is closely linked with the bicarbonate content. Normal carbonates are rarely found in natural waters but sodium bicarbonate is found in some underground supplies. Calcium bicarbonate is the most important, but magnesium bicarbonate may be present in smaller quantities in general, it may be regarded as having properties similar to those of the calcium compound except that on decomposition by heat it deposits magnesium hydroxide whereas calcium bicarbonate precipitates the carbonate. [Pg.350]

To a solution of 130 g. (0.6 mole) of arsanilic acid (Org. Syn. 3, 13) in 600 cc. (0.6 mole) of normal sodium hydroxide is added 52 g. (0.62 mole) of sodium bicarbonate and 70 g. (0.75 mole) of chloroacetamide (Org. Syn. 7, 16). The mixture is heated 011 a water bath to 90-1000 and a steady evolution of carbon dioxide occurs. At the end of two hours, when gas evolution has practically ceased, the mixture is cooled to 40° C., stirred vigorously and 150 cc. of 1 1 hydrochloric acid poured in rapidly. /i-Arsonophenylglycinamide crystallizes at once and, after cooling to room temperature, is filtered by suction and washed once with 2 per cent hydrochloric acid (Note 1), then with cold water. The crude product thus obtained is contaminated with some arsanilic acid and possibly other products. These are removed during purification. The crude product is suspended in about 400 cc. of water and with vigorous stirring, treated carefully with 25 per cent aqueous sodium hydroxide until solution is just complete. At this point the mixture is still acid to litmus and an excess of sodium hydroxide is to be avoided to prevent decomposition of the product. About 15 g. of boneblack... [Pg.100]

The most common source is the supersaturation and subsequent scaling of minerals originating in the MU water. Insoluble calcium carbonate in the form of calcite (CaC03) resulting from the thermal decomposition of soluble calcium bicarbonate [Ca(HC03)2] is a classic example. Calcium carbonate quickly forms a white, friable deposit. In addition, the hydrolysis of excess bicarbonate increases... [Pg.144]

The formation of a passive film of iron oxide (magnetite, Fe304), under sulfite or hydrazine reducing conditions, is optimized at pH of 11 to 12. The downside is that the decomposition of carbonates and bicarbonates produces carbon dioxide, the primary cause of condensate system corrosion. [Pg.227]

Carbon dioxide is present in steam as a result of the thermal decomposition of bicarbonates in the boiler. [Pg.285]

Where FW contains bicarbonate or carbonate alkalinity (as calcium, magnesium, or sodium salts), these salts undergo thermal decomposition in the boiler, and the steam-volatile contaminant gas carbon dioxide is introduced into the steam distribution system, as shown ... [Pg.288]

Under BW temperature conditions, this first-stage decomposition reaction proceeds to 100% completion, producing carbonate alkalinity and carbon dioxide. Thus, 1 ppm of bicarbonate initially produces 0.44 ppm of carbon dioxide. [Pg.515]

This second-stage decomposition reaction (carbonate hydrolysis) proceeds to approximately 80% completion at 150 psig, producing hydroxide alkalinity and carbon dioxide and providing a further 0.35 ppm carbon dioxide (80% of 0.44 ppm). Consequently, the total production of carbon dioxide from 1 ppm of bicarbonate alkalinity is 0.79 ppm at 150 psig. [Pg.515]


See other pages where Bicarbonate decomposition is mentioned: [Pg.18]    [Pg.241]    [Pg.498]    [Pg.18]    [Pg.241]    [Pg.498]    [Pg.31]    [Pg.784]    [Pg.813]    [Pg.222]    [Pg.493]    [Pg.351]    [Pg.478]    [Pg.43]    [Pg.8]    [Pg.6]    [Pg.75]    [Pg.163]    [Pg.55]    [Pg.47]    [Pg.99]    [Pg.265]    [Pg.679]    [Pg.774]    [Pg.1527]    [Pg.202]    [Pg.499]    [Pg.298]    [Pg.168]   
See also in sourсe #XX -- [ Pg.131 ]




SEARCH



Bicarbonate

© 2024 chempedia.info