Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzyl removal

The reactions of 2-lithio- and 2-sodio-imidazoles and -benzimidazoles are not particularly novel. The compounds do, however, prove a means of introducing a variety of functional groups into the 2-position of the heterocyclic ring. Such metalation reactions at C-2 can only occur readily when there is no alternative site for the metal. Therefore, only N-substituted imidazoles are of synthetic utility, and it may be necessary to select an N-substituent which can be removed later. For this reason, benzyl (removed by reductive or oxidative methods), benzenesulfonyl (removed by ammoniacal ethanol), trityl (hydrolyzed by mild acid treatment) and alkoxymethyl (easily hydrolyzed in acid or basic medium) groups have proved useful in this context. A typical reaction sequence is shown in Scheme 136 <78JOC438l, 77JHC517). In addition, reactions with aldehydes and ketones (to form alcohols), with ethyl formate (to form the alcohol) and with carbon dioxide (to form carboxylic acids) have found application (B-76MI40701). [Pg.448]

This was followed shortly by a stereo- and enantiocontrolled synthesis of (—)-chimonanthine (154) and calycanthine (150) as well as a second route to meso-chimonanthine (152). The central step in this synthesis features the use of a double Heck cyclization to create vicinal quaternary carbon centers in high yields and with complete stereocontrol 124). The synthesis commenced with a double alkylation of the lithium dienolate of dimethyl succinate 194 and tartrate-derived diiodide 195 to give a diastereomeric mixture of the saturated diesters. Subsequent oxidation of the diesters, followed in succession by aminolysis, A-benzylation, removal of the benzyl ethers, and silylation, provided the cyclization substrate 197, which on Heck cyclization yielded a single product, 198, a pentacyclic bisoxindole, subsequently shown to have the meso relationship of the two oxindole groups. Further manipulations of 198 led eventually to the diazide derivative 199, which can be processed to we.so-chimonanthine (152), following the procedure established in the preceding synthesis (Scheme 14). [Pg.209]

Hydrogenolysis (s. a. Hydrocarbons, Oxygen, benzylic, removal. Replacement by hydrogen)... [Pg.286]

The amine is removed by the addition of alkali and characterised by a suitable derivative the sulphonic acid may then be recovered as the sodium salt and converted into a crystalline derivative, e.g., the S-benzyl-tso-thiuronium salt. [Pg.558]

Benzylatnine. Warm an alcoholic suspension of 118-5 g. of finely-powdered benzyl phthalimide with 25 g. of 100 per cent, hydrazine hydrate (CAUTION corrosive liquid) a white, gelatinous precipitate is produced rapidly. Decompose the latter (when its formation appears complete) by heating with excess of hydrochloric acid on a steam bath. Collect the phthalyl hydrazide which separates by suction filtration, and wash it with a little water. Concentrate the filtrate by distillation to remove alcohol, cool, filter from the small amount of precipitated phthalyl hydrazide, render alkaline with excess of sodium hydroxide solution, and extract the liberated benzylamine with ether. Dry the ethereal solution with potassium hydroxide pellets, remove the solvent (compare Fig. //, 13, 4) on a water bath and finally distil the residue. Collect the benzylamine at 185-187° the 3ueld is 50 g. [Pg.569]

The dibenzyl ketone has a very high b.p. (ca. 200°/21 mm.) and this remains in the flask when the unsymmetrical ketone has been removed by distillation. The dialkyl ketone has a comparatively low b.p. and is therefore easily removed by fractionation under normal pressure acetone is most simply separated by washing with water. In this way methyl benzyl ketone (R = CHj), ethyl benzyl ketone (R = CHgCH,) and n-propyl benzyl ketone (R = CHjCHjCH,) are prepared. By using hydrocinnamic acid in place of phenylacetic acid ... [Pg.727]

This product is sufficiently pure for the preparation of phenylacetic acid and its ethyl ester, but it contains some benzyl tso-cyanide and usually develops an appreciable colour on standing. The following procedure removes the iso-cyanide and gives a stable water-white compound. Shake the once-distilled benzyl cyanide vigorously for 5 minutes with an equal volume of warm (60°) 60 per cent, sulphuric acid (prepared by adding 55 ml. of concentrated sulphuric acid to 100 ml. of water). Separate the benzyl cyanide, wash it with an equal volume of sa+urated sodium bicarbonate solution and then with an equal volume of half-saturated sodium chloride solution- Dry with anhydrous magnesium sulphate and distil under reduced pressure. The loss in washing is very small (compare n-Butyl Cyanide, Section 111,113, in which concentrated hydrochloric acid is employed). [Pg.761]

Hydrolysis of benzyl cyanide to phenylacetamide. In a 1500 ml. three-necked flask, provided with a thermometer, reflux condenser and efficient mechanical stirrer, place 100 g. (98 ml.) of benzyl]cyanide and 400 ml. of concentrated hydrochloric acid. Immerse the flask in a water bath at 40°. and stir the mixture vigorously the benzyl cyanide passes into solution within 20-40 minutes and the temperature of the reaction mixture rises to about 50°, Continue the stirring for an additional 20-30 minutes after the mixture is homogeneous. Replace the warm water in the bath by tap water at 15°, replace the thermometer by a dropping funnel charged with 400 ml. of cold distilled water, and add the latter with stirring crystals commence to separate after about 50-75 ml. have been introduced. When all the water has been run in, cool the mixture externally with ice water for 30 minutes (1), and collect the crude phenylacetamide by filtration at the pump. Remove traces of phenylacetic acid by stirring the wet sohd for about 30 minutes with two 50 ml. portions of cold water dry the crystals at 50-80°. The yield of phenylacetamide, m.p. 154-155°, is 95 g. RecrystaUisation from benzene or rectified spirit raises the m.p. to 156°. [Pg.762]

Place 75 g. (74 ml.) of benzyl cyanide (Section IV,160), 125 g. (153 ml.) of rectifled spirit and 150 g. (68 ml.) of concentrated sulphuric acid in a 750 ml. round-bottomed flask, fitted with an efficient reflux condenser. Reflux the mixture, which soon separates into Wo layers, gently for 8 hoius, cool and pour into 350 ml. of water. Separate the upper layer. Dissolve it in about 75 ml. of ether (1) in order to facilitate the separation of the layers in the subsequent washing process. Wash the ethereal solution carefully with concentrated sodium bicarbonate solution until effervescence ceases and then with water. Dry over 10 g. of anh3 drous magnesium sulphate for at least 30 minutes. Remove the solvent with the aid of the apparatus shown in Fig. II, 13, 4 and distil from an air bath (Fig. II, 5, 3). The ethyl phenylacetate passes over at 225-229° (mainly 228°) as a colourless liquid the yield is 90 g. Alternatively, the residue after removal of the ether may be distilled in a Claisen flask under diminished pressm (Fig. II, 20, 1) collect the ester at 116-lI8°/20 mm. [Pg.783]

Alkvl Azides from Alkyl Bromides and Sodium Azide General procedure for the synthesis of alkyl azides. In a typical experiment, benzyl bromide (360 mg, 2.1 mmol) in petroleum ether (3 mL) and sodium azide (180 mg, 2.76 mmol) in water (3 mL) are admixed in a round-bottomed flask. To this stirred solution, pillared clay (100 mg) is added and the reaction mixture is refluxed with constant stirring at 90-100 C until all the starting material is consumed, as obsen/ed by thin layer chromatographv using pure hexane as solvent. The reaction is quenched with water and the product extracted into ether. The ether extracts are washed with water and the organic layer dried over sodium sulfate. The removal of solvent under reduced pressure affords the pure alkyl azides as confirmed by the spectral analysis. ... [Pg.156]

A suspension of di1Ithiopropyne in THF and hexane was prepared from 0.25 mol of propyne (see Chapter II, Exp. 17). The suspension was cooled to -10°C and 0.22 mol of benzyl chloride was added dropwise in 30 min, while maintaining the temperature of the mixture at about -10°C. The cooling bath was then removed temporarily and the temperature was allowed to rise to After stirring for... [Pg.48]

The large sulfur atom is a preferred reaction site in synthetic intermediates to introduce chirality into a carbon compound. Thermal equilibrations of chiral sulfoxides are slow, and parbanions with lithium or sodium as counterions on a chiral carbon atom adjacent to a sulfoxide group maintain their chirality. The benzylic proton of chiral sulfoxides is removed stereoselectively by strong bases. The largest groups prefer the anti conformation, e.g. phenyl and oxygen in the first example, phenyl and rert-butyl in the second. Deprotonation occurs at the methylene group on the least hindered site adjacent to the unshared electron pair of the sulfur atom (R.R. Fraser, 1972 F. Montanari, 1975). [Pg.8]

Catalytic hydrogenation is mostly used to convert C—C triple bonds into C C double bonds and alkenes into alkanes or to replace allylic or benzylic hetero atoms by hydrogen (H. Kropf, 1980). Simple theory postulates cis- or syn-addition of hydrogen to the C—C triple or double bond with heterogeneous (R. L. Augustine, 1965, 1968, 1976 P. N. Rylander, 1979) and homogeneous (A. J. Birch, 1976) catalysts. Sulfur functions can be removed with reducing metals, e. g. with Raney nickel (G. R. Pettit, 1962 A). Heteroaromatic systems may be reduced with the aid of ruthenium on carbon. [Pg.96]

Six protective groups for alcohols, which may be removed successively and selectively, have been listed by E.J. Corey (1972B). A hypothetical hexahydroxy compound with hydroxy groups 1 to 6 protected as (1) acetate, (2) 2,2,2-trichloroethyl carbonate, (3) benzyl ether, (4) dimethyl-t-butylsilyl ether, (5) 2-tetrahydropyranyl ether, and (6) methyl ether may be unmasked in that order by the reagents (1) KjCO, or NH, in CHjOH, (2) Zn in CHjOH or AcOH, (3) over Pd, (4) F", (5) wet acetic acid, and (6) BBrj. The groups may also be exposed to the same reagents in the order A 5, 2, 1, 3, 6. The (4-methoxyphenyl)methyl group (=MPM = p-methoxybenzyl, PMB) can be oxidized to a benzaldehyde derivative and thereby be removed at room temperature under neutral conditions (Y- Oikawa, 1982 R. Johansson, 1984 T. Fukuyama, 1985). [Pg.157]

Carboxyl groups of ammo acids and peptides are normally protected as esters Methyl and ethyl esters are prepared by Fischer esterification Deprotection of methyl and ethyl esters is accomplished by hydrolysis m base Benzyl esters are a popular choice because they can also be removed by hydrogenolysis Thus a synthetic peptide protected at both... [Pg.1138]

Section 27 16 Carboxyl groups are normally protected as benzyl methyl or ethyl esters Hydrolysis m dilute base is normally used to deprotect methyl and ethyl esters Benzyl protecting groups are removed by hydrogenolysis... [Pg.1151]


See other pages where Benzyl removal is mentioned: [Pg.181]    [Pg.182]    [Pg.225]    [Pg.337]    [Pg.219]    [Pg.270]    [Pg.181]    [Pg.182]    [Pg.225]    [Pg.337]    [Pg.219]    [Pg.270]    [Pg.232]    [Pg.232]    [Pg.233]    [Pg.514]    [Pg.517]    [Pg.518]    [Pg.566]    [Pg.569]    [Pg.712]    [Pg.735]    [Pg.763]    [Pg.769]    [Pg.885]    [Pg.902]    [Pg.113]    [Pg.54]    [Pg.139]    [Pg.235]    [Pg.455]    [Pg.275]    [Pg.527]    [Pg.157]   
See also in sourсe #XX -- [ Pg.31 , Pg.71 , Pg.76 , Pg.124 , Pg.194 , Pg.235 , Pg.265 , Pg.484 ]




SEARCH



Benzyl esters removal

Benzyl selective removal

Oxygen benzylic, removal

© 2024 chempedia.info