Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzoic acid hydrolysis

Aconites, commonly called wolfsbane or monkshood, are species of Aconitum (Ranunculaceae), valued ornamental herbaceous plants, grown for their showy blue or purple flowers, which are shaped like a monk s cowl. Their alkaloid content, mainly in the roots, makes them some of the most toxic plants commonly encountered. The dried roots of Aconitum napellus were once used, mainly externally for relief of pain, e.g. in rheumatism. The toxic alkaloids (0.3-1.5%) are complex diterpene-derived esters. Aconitine (Figure 6.124) is the principal component (about 30%) and is a diester of aconine with acetic and benzoic acids. Hydrolysis products benzoylaconine and aconine are also present in dried plant material. These alkaloids appear to behave as neurotoxins by acting on sodium channels. All species of Aconitum and Delphinium are potentially toxic to man and animals and must be treated with caution. [Pg.387]

Powerful selective antidotes or antagonists to treat cocaine abuse are necessary to offset the increased cocaine toxicity currently observed in the United States. The use of catalytic antibodies in the creation of selective binding agents and detoxication catalysts of cocaine could represent a novel approach that may result in significant advances in the field of detoxication of drugs of abuse. An anti-cocaine catalytic antibody directed to hydrolyze the benzoyl ester could in principle catalyze the formation of ecgonine and benzoic acid, hydrolysis products of cocaine that do not possess the reinforcing or CNS stimulation properties of cocaine (Spealman et al. 1989). [Pg.242]

Benzoic acid Hydrolysis of nitrile hydrolysis of benzo-trichloride... [Pg.44]

It was first described in 1608 when it was sublimed out of gum benzoin. It also occurs in many other natural resins. Benzoic acid is manufactured by the air oxidation of toluene in the liquid phase at 150°C and 4-6 atm. in the presence of a cobalt catalyst by the partial decarboxylation of phthalic anhydride in either the liquid or vapour phase in the presence of water by the hydrolysis of benzotrichloride (from the chlorination of toluene) in the presence of zinc chloride at 100°C. [Pg.56]

Hammen equation A correlation between the structure and reactivity in the side chain derivatives of aromatic compounds. Its derivation follows from many comparisons between rate constants for various reactions and the equilibrium constants for other reactions, or other functions of molecules which can be measured (e g. the i.r. carbonyl group stretching frequency). For example the dissociation constants of a series of para substituted (O2N —, MeO —, Cl —, etc.) benzoic acids correlate with the rate constant k for the alkaline hydrolysis of para substituted benzyl chlorides. If log Kq is plotted against log k, the data fall on a straight line. Similar results are obtained for meta substituted derivatives but not for orthosubstituted derivatives. [Pg.199]

Obtained synthetically by one of the following processes fusion of sodium ben-zenesulphonate with NaOH to give sodium phenate hydrolysis of chlorobenzene by dilute NaOH at 400 C and 300atm. to give sodium phenate (Dow process) catalytic vapour-phase reaction of steam and chlorobenzene at 500°C (Raschig process) direct oxidation of cumene (isopropylbenzene) to the hydroperoxide, followed by acid cleavage lo propanone and phenol catalytic liquid-phase oxidation of toluene to benzoic acid and then phenol. Where the phenate is formed, phenol is liberated by acidification. [Pg.303]

Figure 3-8 a) The dissociation of substituted benzoic acids (X = substituent), and b) the hydrolysis of benzoic acid methyl esters. [Pg.181]

Benzamide from Benzonitrile. (A) Although benzonitrile when boiled with 70% sulphuric acid undergoes ready hydrolysis to benzoic acid (see above), treatment with hot 90% sulphuric acid gives the intermediate benzamide. This difference arises partly from the difference in temperature employed, but also... [Pg.193]

Hydrolysis of />-Tolunitrile. As in the case of benzonitrile, alkaline h> drolysis is preferable to hydrolysis by 70% sulphuric acid. Boil a mixture of 5 g. of p-tolunitrile, 75 ml. of 10% aqueous sodium hydroxide solution and 15 ml. of ethanol under a reflux water-condenser. The ethanol is added partly to increase the speed of the hydrolysis, but in particular to prevent the nitrile (which volatilises in the steam) from actually crystallising in the condenser. The solution becomes clear after about i hour s heating, but the boiling should be continued for a total period of 1-5 hours to ensure complete hydrolysis. Then precipitate and isolate the p-toluic acid, CH3CgH4COOH, in precisely the same way as the benzoic acid in the above hydrolysis of benzonitrile. Yield 5 5 g. (almost theoretical). The p-toluic acid has m.p. 178°, and may be recrystallised from a mixture of equal volumes of water and rectified spirit. [Pg.195]

Hydrolysis of Benzanilide. For this hydrolysis, it is necessary to use 70% sulphuric acid (see Hydrolysis of Acetanilide, p. 108). Add I g. of benzanilide to 10 ml. of 70% sulphuric acid, and boil the mixture gently in a small flask under a reflux water-condenser for 30 minutes. Hydrolysis will now be complete, but much of the benzoic acid will have vaporised in the steam and then solidified in the conden-... [Pg.246]

Hydrolyses to ethanol and acid on being heated for a few minutes. Cool, add a few ml. of water and then cone. HCl, and cool again. Crystals of benzoic acid separate out. Complete hydrolysis cannot be carried out effectively on a test-tube scale. ( ec p. 355). [Pg.330]

Hydrolysis of benzanilide. Place 5 g. of benzanilide and 50 ml. of 70 per cent, sulphuric acid in a small flask fitted with a reflux condenser, and boU gently for 30 minutes. Some of the benzoio acid will vapourise in the steam and solidify in the condenser. Pour 60 ml. of hot water down the condenser this will dislodge and partially dissolve the benzoic acid. Cool the flask in ice water filter off the benzoic acid (anifine sulphate does not separate at this dilution), wash well with water, drain, dry upon filter paper, and identify by m.p. (121°) and other tests. Render the filtrate alkaline by cautiously adding 10 per cent, sodium hydroxide solution, cool and isolate the aniline by ether extraction. Recover the ether and test the residue for anifine (Section IV,100). [Pg.583]

Hydrolysis of benzonitrile to benzoic acid. BoU 5 -1 g. (5 ml.) of benzo-nitrUe and 80 ml. of 10 per cent, sodium hydroxide solution in a 250 ml. round-bottomed flask fitted with a reflux water condenser until the condensed liquid contains no oUy drops (about 45 minutes). Remove the condenser, and boU the solution in an open flask for a few minutes to remove free ammonia. Cool the liquid, and add concentrated hydrochloric acid, cautiously with shaking, until precipitation of benzoic acid is complete. Cool, filter the benzoic acid with suction, and wash with cold water dry upon filter paper in the air. The benzoic acid (5-8 g.) thus obtained should be pure (m.p. 121°). Recrystal-lise a small quantity from hot water and redetermine the m.p. [Pg.609]

Anthranilic acid. This substance, the ortho amino derivative of benzoic acid, may be conveniently prepared by the action of sodium hypobromite (or sodium hypochlorite) solution upon phthalimide in alkaline solution at 80°. The ring in phthalimide is opened by hydrolysis to phthalamidic acid and the latter undergoes the Hofmann reaction (compare Section 111,116) ... [Pg.754]

The hydrolysis by alkali is illustrated by the following experimental details for benzamido. Place 3 g. of benzamide and 50 ml. of 10 per cent, sodium hydroxide solution in a 150 ml. conical or round-bottomed flask equipped with a reflux condenser. Boil the mixture gently for 30 minutes ammonia is freely evolved. Detach the condenser and continue the boiling in the open flask for 3-4 minutes to expel the residual ammonia. Cool the solution in ice, and add concentrated hydrochloric acid until the mixture is strongly acidic benzoic acid separates immediately. Leave the mixture in ice until cold, filter at the pump, wash with a little cold water and drain well. RecrystaUise the benzoic acid from hot water. Determine the m.p., and confirm its identity by a mixed m.p. test. [Pg.799]

Because cyano groups may be hydrolyzed to carboxylic acids (Section 20 19) the Sand meyer preparation of aryl nitriles is a key step m the conversion of arylammes to sub stituted benzoic acids In the example just cited the o methylbenzomtnle that was formed was subsequently subiected to acid catalyzed hydrolysis and gave o methylbenzoic acid in 80-89% yield... [Pg.948]

The three chemical reactions in the toluene—benzoic acid process are oxidation of toluene to form benzoic acid, oxidation of benzoic acid to form phenyl benzoate, and hydrolysis of phenyl benzoate to form phenol. A typical process consists of two continuous steps (13,14). In the first step, the oxidation of toluene to benzoic acid is achieved with air and cobalt salt catalyst at a temperature between 121 and 177°C. The reactor is operated at 206 kPa gauge (2.1 kg/cm g uge) and the catalyst concentration is between 0.1 and 0.3%. The reactor effluent is distilled and the purified benzoic acid is collected. The overall yield of this process is beheved to be about 68 mol % of toluene. [Pg.289]

Benzaldehyde. Annual production of ben2aldehyde requires ca 6,500—10,000 t (2-3 x 10 gal) of toluene. It is produced mainly as by-product during oxidation of toluene to benzoic acid, but some is produced by hydrolysis of ben2al chloride. The main use of ben2aldehyde is as a chemical intermediate for production of fine chemicals used for food flavoring, pharmaceuticals, herbicides, and dyestuffs. [Pg.192]

Benzoic acid [65-85-0] C H COOH, the simplest member of the aromatic carboxyHc acid family, was first described in 1618 by a French physician, but it was not until 1832 that its stmcture was deterrnined by Wn b1er and Liebig. In the nineteenth century benzoic acid was used extensively as a medicinal substance and was prepared from gum benzoin. Benzoic acid was first produced synthetically by the hydrolysis of benzotrichloride. Various other processes such as the nitric acid oxidation of toluene were used until the 1930s when the decarboxylation of phthaUc acid became the dominant commercial process. During World War II in Germany the batchwise Hquid-phase air oxidation of toluene became an important process. [Pg.52]

Benzyl chloride readily forms a Grignard compound by reaction with magnesium in ether with the concomitant formation of substantial coupling product, 1,2-diphenylethane [103-29-7]. Benzyl chloride is oxidized first to benzaldehyde [100-52-7] and then to benzoic acid. Nitric acid oxidizes directly to benzoic acid [65-85-0]. Reaction with ethylene oxide produces the benzyl chlorohydrin ether, CgH CH20CH2CH2Cl (18). Benzylphosphonic acid [10542-07-1] is formed from the reaction of benzyl chloride and triethyl phosphite followed by hydrolysis (19). [Pg.59]

Benzotrichloride is a chemical iatermediate used to produce two significant products. Partial hydrolysis or reaction with benzoic acid yields benzoyl chloride, whereas chlorination and subsequent reaction with hydrogen fluoride yields -chlorobenzotrifluoride [98-56-6]. [Pg.61]

Chlotobenzoyl)-benzoic acid is nitrated in concentrated sulfuric acid, then reduction of the nitro group, ring closure, and hydrolysis occur simultaneously in concentrated sulfuric acid in the presence of a reducing agent and boric acid. Thus obtained cmde chloro pink is purified by selective precipitation from sulfuric acid in order to separate it from by-produced 2-amino-3-chloto-l-hydroxyanthtaquinone (24) (36). [Pg.311]

Pyrogallol monomethyl ether has been prepared by the methylation of pyrogallol with dimethyl sulfate or methyl iodide by the decarboxylation of 2,3-dihj droxy-4-methoxy-benzoic acid and by the methylation of pyrogallol carbonate with diazomethane and subsequent hydrolysis. The method described is taken from the improved procedure of Baker and Savage for the preparation of pyrogallol monomethyl ether from o-vanillin by oxidation with hydrogen peroxide. [Pg.91]

Bromoresorcinol has been prepared by the monobromination of resorcinol monobenzoate and subsequent hydrolysis, from 2-bromo-5-aminophenol by the diazo reaction, by treating resorcinol with dichlorourea and potassium bromide, and by the bromination of 2,4-dihydroxy benzoic acid followed by decarboxylation. The above procedure is based particularly upon the observations of Rice. ... [Pg.24]

Fig. 4.2. Conelation of acid dissociation constants of benzoic acids with rates of alkaline hydrolysis of ethyl benzoates. [From L. P. Hammett, J. Am. Chem. Soc. 59 96 (1937).]... Fig. 4.2. Conelation of acid dissociation constants of benzoic acids with rates of alkaline hydrolysis of ethyl benzoates. [From L. P. Hammett, J. Am. Chem. Soc. 59 96 (1937).]...
Example 4.3. The p value for alkaline saponification of methyl esters of substituted benzoic acids is 2.38, and the rate constant for saponification of methyl benzoate under the conditions of interest is 2 x 10 s . Calculate the rate constant for the hydrolysis... [Pg.208]

Aconitine contains four methoxyl groups and three hydroxyl groups (triacetyl derivative, m.p. 207-8°). On hydrolysis by water under pressure, or by boiling with dilute acid, it loses 1 mol. of acetic acid and forms benzoylaconine, whilst hydrolysis by alkalis eliminates both acetic and benzoic acids and yields aconine. [Pg.675]

The acetyl group in aconitine may be eliminated in two other ways (a) by heating aconitine in sealed tubes with methyl alcohol, when methylbenzoylaconine, m.p. 210-1°, is formed, or (b) by heating the alkaloid at its melting-point, when pyraconitine, C32H43O9N, m.p. 167-5° (171°, Schulze), [a] ° — 112-2° (EtOH), is formed. The latter yields crystalline, laevorotatory salts, and on hydrolysis by alkalis affords benzoic acid and pyraconine, C2sH3gOgN, amorphous, [a]n — 91° (HgO), but yields a crystalline hydrochloride, B. HCl. 2-5H20, m.p. 154° (135°, Schulze), Md - 102° (HgO) (- 124-6°, Schulze). ... [Pg.675]

Neopelline, C2sH3305(0Me)3(NMe). 3H2O, was isolated from amorphous aconitine by Schulze and Berger. It is amorphous, and on alkaline hydrolysis furnishes acetic and benzoic acids with neoline, C2aH390gN, amorphous, but yielding a crystalline hydrobromide, needles, m.p. 210-5° (dec.), — 4-31°, and an acetyl derivative, the auri-... [Pg.678]


See other pages where Benzoic acid hydrolysis is mentioned: [Pg.164]    [Pg.1512]    [Pg.164]    [Pg.1512]    [Pg.57]    [Pg.199]    [Pg.181]    [Pg.193]    [Pg.232]    [Pg.786]    [Pg.103]    [Pg.224]    [Pg.56]    [Pg.37]    [Pg.242]    [Pg.204]    [Pg.834]    [Pg.525]    [Pg.679]   
See also in sourсe #XX -- [ Pg.313 ]




SEARCH



© 2024 chempedia.info