Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Toluene-benzoic acid process

Toluene—Benzoic Acid Process. The toluene—benzoic acid process was first introduced by Dow-Canada, Ltd. in 1961 (13). It accounts for 4% of the total synthetic phenol capacity in the world. [Pg.289]

The three chemical reactions in the toluene—benzoic acid process are oxidation of toluene to form benzoic acid, oxidation of benzoic acid to form phenyl benzoate, and hydrolysis of phenyl benzoate to form phenol. A typical process consists of two continuous steps (13,14). In the first step, the oxidation of toluene to benzoic acid is achieved with air and cobalt salt catalyst at a temperature between 121 and 177°C. The reactor is operated at 206 kPa gauge (2.1 kg/cm g uge) and the catalyst concentration is between 0.1 and 0.3%. The reactor effluent is distilled and the purified benzoic acid is collected. The overall yield of this process is beheved to be about 68 mol % of toluene. [Pg.289]

The second processing step, in which benzoic acid is oxidized and hydrolyzed to phenol, is carried out in two reactors in series. In the first reactor, the benzoic acid is oxidized to phenyl benzoate in the presence of air and a catalyst mixture of copper and magnesium salts. The reactor is operated at 234°C and 147 kPa gauge (1.5 kg/cm g uge). The phenyl benzoate is then hydrolyzed with steam in the second reactor to yield phenol and carbon dioxide. This occurs at 200°C and atmospheric pressure. The overall yield of phenol from benzoic acid is around 88 mol %. Figure 2 shows a simplified diagram for the toluene—benzoic acid process. [Pg.289]

Fig. 2. Toluene—benzoic acid process for phenol production. Fig. 2. Toluene—benzoic acid process for phenol production.
Toluene-benzoic acid process, of phenol manufacture, 18 750 Toluene diamine (TDA), 13 797 Toluenediamine (TDA), 25 189-201. See also Toluenediamines chain extenders for, 25 197 derivatives of, 25 196-197 diazotization of, 25 192 health and safety factors related to, 25 196... [Pg.957]

The toluene-benzoic acid process involves three chemical reactions (1) oxidation of toluene to form benzoic acid, (2) oxidation of benzoic acid to form phenyl benzoate, and (3) hydrolysis of phenyl benzoate to form phenol. [Pg.389]

In this process, cumene is oxidized to cumene hydroperoxide by air at about 100°C in an alkaline environment. The oxidation products are separated, and the bottoms are mixed with a small amount of acetone and sulfuric acid and held at 70-80°C while the hydroperoxide splits into phenol and acetone. Total domestic phenol capacity with this process is about 4.8 billion lb/year. In the much smaller-volume benzoic acid process, toluene is air-oxidized to benzoic acid with a cobalt catalyst. The benzoic acid then is converted to phenol by an oxidative decarboxylation reaction with air at about 240°C. [Pg.393]

Process Toluene-Benzoic Acid (Dow Toluene Process) (Kaeding Process) Major Reaction Steps Reaction Conditions... [Pg.84]

Dow has commercialized a 2-stage process from toluene. Benzoic acid is produced by liquid-phase oxidation in the presence of cobalt, and is then subjected to oxidative decarboxylation with a copper catalyst, again in the liquid phase ... [Pg.393]

Obtained synthetically by one of the following processes fusion of sodium ben-zenesulphonate with NaOH to give sodium phenate hydrolysis of chlorobenzene by dilute NaOH at 400 C and 300atm. to give sodium phenate (Dow process) catalytic vapour-phase reaction of steam and chlorobenzene at 500°C (Raschig process) direct oxidation of cumene (isopropylbenzene) to the hydroperoxide, followed by acid cleavage lo propanone and phenol catalytic liquid-phase oxidation of toluene to benzoic acid and then phenol. Where the phenate is formed, phenol is liberated by acidification. [Pg.303]

Side chain oxidation of alkylbenzenes is important in certain metabolic processes One way m which the body rids itself of foreign substances is by oxidation m the liver to compounds that are more polar and hence more easily excreted m the urine Toluene for example is oxidized to benzoic acid by this process and is eliminated rather readily... [Pg.444]

Synthetic phenol capacity in the United States was reported to be ca 1.6 x 10 t/yr in 1989 (206), almost completely based on the cumene process (see Cumene Phenol). Some synthetic phenol [108-95-2] is made from toluene by a process developed by The Dow Chemical Company (2,299—301). Toluene [108-88-3] is oxidized to benzoic acid in a conventional LPO process. Liquid-phase oxidative decarboxylation with a copper-containing catalyst gives phenol in high yield (2,299—304). The phenoHc hydroxyl group is located ortho to the position previously occupied by the carboxyl group of benzoic acid (2,299,301,305). This provides a means to produce meta-substituted phenols otherwise difficult to make (2,306). VPOs for the oxidative decarboxylation of benzoic acid have also been reported (2,307—309). Although the mechanism appears to be similar to the LPO scheme (309), the VPO reaction is reported not to work for toluic acids (310). [Pg.345]

The cumene oxidation route is the lea ding commercial process of synthetic phenol production, accounting for more than 95% of phenol produced in the world. The remainder of synthetic phenol is produced by the toluene oxidation route via benzoic acid. Other processes including benzene via cyclohexane, benzene sulfonation, benzene chlorination, and benzene oxychl orin ation have also been used in the manufacture of phenol. A Hst of U.S. phenol production plants and their estimated capacities in 1994 are shown in Table 2, and worldwide plants and capacities are shown in Table 3. [Pg.287]

The most widely used process for the production of phenol is the cumene process developed and Hcensed in the United States by AHiedSignal (formerly AHied Chemical Corp.). Benzene is alkylated with propylene to produce cumene (isopropylbenzene), which is oxidized by air over a catalyst to produce cumene hydroperoxide (CHP). With acid catalysis, CHP undergoes controUed decomposition to produce phenol and acetone a-methylstyrene and acetophenone are the by-products (12) (see Cumene Phenol). Other commercial processes for making phenol include the Raschig process, using chlorobenzene as the starting material, and the toluene process, via a benzoic acid intermediate. In the United States, 35-40% of the phenol produced is used for phenoHc resins. [Pg.292]

Benzoic Acid. Ben2oic acid is manufactured from toluene by oxidation in the liquid phase using air and a cobalt catalyst. Typical conditions are 308—790 kPa (30—100 psi) and 130—160°C. The cmde product is purified by distillation, crystallization, or both. Yields are generally >90 mol%, and product purity is generally >99%. Kalama Chemical Company, the largest producer, converts about half of its production to phenol, but most producers consider the most economic process for phenol to be peroxidation of cumene. Other uses of benzoic acid are for the manufacture of benzoyl chloride, of plasticizers such as butyl benzoate, and of sodium benzoate for use in preservatives. In Italy, Snia Viscosa uses benzoic acid as raw material for the production of caprolactam, and subsequendy nylon-6, by the sequence shown below. [Pg.191]

In the Hquid-phase process, both benzaldehyde and benzoic acid are recovered. This process was iatroduced and developed ia the late 1950s by the Dow Chemical Company, as a part of their toluene-to-phenol process, and by Snia Viscosa for their toluene-to-caprolactam process. The benzaldehyde recovered from the Hquid-phase air oxidation of toluene may be purified by either batch or continuous distillation. Liquid-phase air oxidation of toluene is covered more fully (see Benzoic acid). [Pg.34]

Benzoic acid [65-85-0] C H COOH, the simplest member of the aromatic carboxyHc acid family, was first described in 1618 by a French physician, but it was not until 1832 that its stmcture was deterrnined by Wn b1er and Liebig. In the nineteenth century benzoic acid was used extensively as a medicinal substance and was prepared from gum benzoin. Benzoic acid was first produced synthetically by the hydrolysis of benzotrichloride. Various other processes such as the nitric acid oxidation of toluene were used until the 1930s when the decarboxylation of phthaUc acid became the dominant commercial process. During World War II in Germany the batchwise Hquid-phase air oxidation of toluene became an important process. [Pg.52]

In the United States all other processes have been completely phased out and virtually all benzoic acid is manufactured by the continuous hquid-phase air oxidation of toluene. In the late 1950s and the early 1960s both Dow Chemical and Snia Viscosa constmcted faciUties for Hquid-phase toluene oxidation because of large requirements for benzoic acid in the production of phenol and caprolactam. Benzoic acid, its salts, and esters are very useful and find appHcation in medicinals, food and industrial preservatives, cosmetics, resins, plasticizers, dyestuffs, and fibers. [Pg.52]

The USP/FCC grade of benzoic acid is usually produced by extraction and crystalliza tion, although distillation has also been used. In the extraction—crystallization process, toluene, water, and methanol have all been used and each is capable of producing a high quaUty benzoic acid product. [Pg.54]

Vapor-phase oxidation of toluene to produce benzoic acid and benzaldehyde has been tried utilizing several different catalysts, but yields are low and the process cannot compete with the Hquid-phase process (see Benzaldehyde). Other processes for the production of benzoic acid are presendy of htde commercial importance. [Pg.54]

All of the benzoic acid producers in the United States employ the Hquid-phase toluene air oxidation process. As toluene becomes more important in the gasoline pool as an octane booster, the benzoic acid producers have to compete with gasoline marketers for the available toluene. If the attractiveness of toluene as an octane booster continues, the cost of producing benzoic acid will most likely increase. [Pg.54]

Caprolactam. At the same time that Dow was constmcting toluene to phenol plants, Snia Viscosa (28—30) introduced two processes for the manufacture of caprolactam (qv) from benzoic acid. The earlier process produced ammonium sulfate as a by-product, but the latter process did not. In either process benzoic acid is hydrogenated to cyclohexanecarboxyHc acid [98-89-5] which then reacts with nitrosylsulfuric acid to form caprolactam [105-60-2]. [Pg.55]

Snia Viscosa. Catalytic air oxidation of toluene gives benzoic acid (qv) in ca 90% yield. The benzoic acid is hydrogenated over a palladium catalyst to cyclohexanecarboxyhc acid [98-89-5]. This is converted directiy to cmde caprolactam by nitrosation with nitrosylsulfuric acid, which is produced by conventional absorption of NO in oleum. Normally, the reaction mass is neutralized with ammonia to form 4 kg ammonium sulfate per kilogram of caprolactam (16). In a no-sulfate version of the process, the reaction mass is diluted with water and is extracted with an alkylphenol solvent. The aqueous phase is decomposed by thermal means for recovery of sulfur dioxide, which is recycled (17). The basic process chemistry is as follows ... [Pg.430]

Other routes for the preparation of phenol are under development and include the Dow process based on toluene. In this process a mixture of toluene, air and catalyst are reacted at moderate temperature and pressure to give benzoic acid. This is then purified and decarboxylated, in the presence of air, to phenol (Figure 23.5). [Pg.637]

Your company receives toluene, a listed toxic chemical, from another facility, reacts the toluene with air to form benzoic acid, and further reacts the benzoic acid with a cadmium catalyst to form terephthallc acid. Cadmium compounds and terephthallc acid are also listed toxic chemicals. Your company processes toluene, and otherwise uses (not processes) the cadmium catalyst (see the definition of "otherwise use" below). Your company manufactures benzoic acid and terephthallc acid. Benzoic acid, however, is not a listed chemical and thus does not trigger reporting requirements. [Pg.26]

Yourfacility receives toluene and naphthalene (both listed toxic chemicals) from an off-site location. You react the toluene with air to form benzoic acid and react the naphthalene with sulfuric acid, which forms phthalic acid and also produces sulfur dioxide fumes. Your facility processes toluene and naphthalene. Both are used as reactants to produce benzoic acid and phthalic acid, chemicals not on the section 313 list. [Pg.38]

Consequently, as a result of increasing environmental pressure many chlorine and nitric acid based processes for the manufacture of substituted aromatic acids are currently being replaced by cleaner, catalytic autoxidation processes. Benzoic acid is traditionally manufactured (ref. 14) via cobalt-catalyzed autoxidation of toluene in the absence of solvent (Fig. 2). The selectivity is ca. 90% at 30% toluene conversion. As noted earlier, oxidation of p-xylene under these conditions gives p-toluic acid in high yield. For further oxidation to terephthalic acid the stronger bromide/cobalt/manganese cocktail is needed. [Pg.280]

Toluene is used more commonly than the other BTXs as a commercial solvent. There are scores of solvent applications, though environmental constraints and health concerns diminish the enthusiasm for these uses. Toluene also is used to make toluene diisocyanate, the precursor to polyurethane foams. Other derivatives include phenol, benzyl alcohol, and benzoic acid. Research continues on ways to use toluene in applications that now require benzene. The hope is that the dealkylation-to-benzene or disproportionation steps can be eliminated. Processes for manufacturing styrene and terephthalic acid—the precursor to polyester fiber—are good, commercial prospects. [Pg.45]

Other routes. Alternate process technologies for making phenol avoid the cumene route. A few plants have used toluene as a feed, oxidizing it over a cobalt catalyst to give benzoic acid. That is followed by a reduction (removal of oxygen atom) to give phenol and carbon dioxide. [Pg.114]

This continual replacement of liquid is readily visible with talc particles sprinkled on to the interface though stationary on the average (if the stirrers in phases 1 and 2 are contra-rotated at appropriate relative speeds), they make occasional sudden, apparently random, local movements, which indicate that considerable replacement of the interface is occurring by liquid impelled into the interface from the bulk. Spontaneous interfacial turbulence, associated with such processes as the transfer of acetone from solvent to water, may further increase the rate of transfer by a factor of two or three times (44, 48, 51). Other systems (48), such as benzoic acid transferring (in either direction) between water and toluene, give transfer rates only about 50% of those calculated by Eq. (26), suggesting either that this equation is not valid or that there is an interfacial resistance. This point is discussed in detail below. [Pg.27]

The gas-phase selective oxidation of o-xylene to phthalic anhydride is performed industrially over vanadia-titania-based catalysts ("7-5). The process operates in the temperature range 620-670 K with 60-70 g/Nm of xylene in air and 0.15 to 0.6 sec. contact times. It allows near 80 % yield in phthalic anhydride. The main by-products are maleic anhydride, that is recovered with yields near 4 %, and carbon oxides. Minor by-products are o-tolualdehyde, o-toluic acid, phthalide, benzoic acid, toluene, benzene, citraconic anhydride. The kinetics and the mechanism of this reaction have been theobjectof a number of studies ( 2-7). Reaction schemes have been proposed for the selective pathways, but much less is known about by-product formation. [Pg.168]

Benzaldehyde is prepared by hydrolysis of benzal chloride, for example in acidic media in the presence of a catalyst such as ferric chloride, or in alkaline media with aqueous sodium carbonate. Part of the commercially available benzaldehyde originates from a technical process for phenol. In this process, benzaldehyde is a byproduct in the oxidation, with air, of toluene to benzoic acid. [Pg.104]


See other pages where Toluene-benzoic acid process is mentioned: [Pg.1001]    [Pg.93]    [Pg.1001]    [Pg.93]    [Pg.369]    [Pg.188]    [Pg.287]    [Pg.334]    [Pg.201]    [Pg.257]    [Pg.34]    [Pg.407]    [Pg.184]    [Pg.41]    [Pg.243]   


SEARCH



Acid process

Toluene benzoic acid

© 2024 chempedia.info