Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastomers limitations

Mihtary interest in the development of fuel and thermal resistant elastomers for low temperature service created a need for fluorinated elastomers. In the early 1950s, the M. W. Kellogg Co. in a joint project with the U.S. Army Quartermaster Corps, and 3M in a joint project with the U.S. Air Force, developed two commercial fluorocarbon elastomers. The copolymers of vinyUdene fluoride, CF2=CH2, and chlorotrifluoroethylene, CF2=CFC1, became available from Kellogg in 1955 under the trademark of Kel-F (1-3) (see Fluorine compounds, ORGANic-POLYcm.OROTRiFLUOROETHYLENE Poly(vinylidene) fluoride). In 1956, 3M introduced a polymer based on poly(l,l-dihydroperfluorobutyl acrylate) trademarked 3M Brand Fluorombber 1F4 (4). The poor balance of acid, steam, and heat resistance of the latter elastomer limited its commercial use. [Pg.508]

Elastomers are flexible polymers that can be stretched but return to their original state when the stretching force is released. Most amorphous polymers become rubbery beyond their glass transition temperature, but not all rubbery polymers are elastic. Cross links in elastomers limit the extent to which elastomers can be deformed then encourage them to return to their original shape when they are relaxed. [Pg.1225]

Elastomer Limited Liability Company, 400005, 75 Chuikova str. Volgograd, Russia... [Pg.276]

Polyacrylate elastomers find limited use in hydrauhc systems and gasket apphcations because of their superior heat resistance compared to the nitrile mbbers (219,220). Ethylene—acrylate copolymers were introduced in 1975. The apphcations include transmission seals, vibration dampers, dust boots, and steering and suspension seals. Further details and performance comparisons with other elastomers are given in reference 221 (see also Elastomers, SYNTHETIC-ACRYLIC ELASTOTffiRS). [Pg.172]

Elastomeric Modified Adhesives. The major characteristic of the resins discussed above is that after cure, or after polymerization, they are extremely brittie. Thus, the utility of unmodified common resins as stmctural adhesives would be very limited. Eor highly cross-linked resin systems to be usehil stmctural adhesives, they have to be modified to ensure fracture resistance. Modification can be effected by the addition of an elastomer which is soluble within the cross-linked resin. Modification of a cross-linked resin in this fashion generally decreases the glass-transition temperature but increases the resin dexibiUty, and thus increases the fracture resistance of the cured adhesive. Recendy, stmctural adhesives have been modified by elastomers which are soluble within the uncured stmctural adhesive, but then phase separate during the cure to form a two-phase system. The matrix properties are mosdy retained the glass-transition temperature is only moderately affected by the presence of the elastomer, yet the fracture resistance is substantially improved. [Pg.233]

Plastics and Elastomers. Common plastics and elastomers (qv) show exceUent resistance to hydrochloric acid within the temperature limits of the materials. Soft natural mbber compounds have been used for many years as liners for concentrated hydrochloric acid storage tanks up to a temperature of 60°C (see Rubber, natural). SemUiard mbber is used as linings in pipe and equipment at temperatures up to 70°C and hard mbber is used for pipes up to 50°C and pressures up to 345 kPa (50 psig). When contaminants are present, synthetic elastomers such as neoprene, nitrile, butyl. [Pg.446]

Butyl mbber, a copolymer of isobutjiene with 0.5—2.5% isoprene to make vulcanization possible, is the most important commercial polymer made by cationic polymerization (see Elastomers, synthetic-butyl rubber). The polymerization is initiated by water in conjunction with AlCl and carried out at low temperature (—90 to —100° C) to prevent chain transfer that limits the molecular weight (1). Another important commercial appHcation of cationic polymerization is the manufacture of polybutenes, low molecular weight copolymers of isobutylene and a smaller amount of other butenes (1) used in adhesives, sealants, lubricants, viscosity improvers, etc. [Pg.244]

Diarylamiaes fuactioa as mbber antioxidants by breaking the peroxidative chain reactions leading to mbber deterioration. Nearly all commercial synthetic mbbers (see Elastomers, synthetic), including neoprene, butyl, styrene—butadiene, and the acrylonitrile—butadiene mbbers, can be protected with about 1—2% of an alkylated diphenylamine. DPA itself is not used as a mbber antioxidant. An objectionable feature of these antioxidants is that they cause discoloration and staining which limits their use to applications where this is not important. [Pg.244]

Polypropylene sheet has been used most extensively however, thermoplastic polyester, polycarbonate, and nylon versions are available (see Elastomers, synthetic Polycarbonates). Continuous strand glass fiber mat is the typical reinforcement. The limited number of sheet suppHers reduces potential for competitive pricing. [Pg.96]

Fluoroelastomers. The fluoroelastomers were introduced to the mbber industry in the late 1950s by the DuPont Company. They were made by modification of Teflon polymers and designed to have exceUent heat and chemical resistance, but remain elastomeric in nature. They were very expensive and have found use in limited appHcations. However, with the increasing demand in the automotive and industrial market for improved reHabUity and longer Hfe, the elastomeric fluoroelastomers have made significant inroads into these appHcations (see Elastomers, synthetic-fluorocarbon ELASTOTffiRS). [Pg.233]

Polymers account for about 3—4% of the total butylene consumption and about 30% of nonfuels use. Homopolymerization of butylene isomers is relatively unimportant commercially. Only stereoregular poly(l-butene) [9003-29-6] and a small volume of polyisobutylene [25038-49-7] are produced in this manner. High molecular weight polyisobutylenes have found limited use because they cannot be vulcanized. To overcome this deficiency a butyl mbber copolymer of isobutylene with isoprene has been developed. Low molecular weight viscous Hquid polymers of isobutylene are not manufactured because of the high price of purified isobutylene. Copolymerization from relatively inexpensive refinery butane—butylene fractions containing all the butylene isomers yields a range of viscous polymers that satisfy most commercial needs (see Olefin polymers Elastomers, synthetic-butylrubber). [Pg.374]

Rubber and Synthetic Elastomers. For many years nondecorative coated fabrics consisted of natural mbber on cotton cloth. Natural mbber is possibly the best all-purpose mbber but some characteristics, such as poor resistance to oxygen and ozone attack, reversion and poor weathering, and low oil and heat resistance, limit its use to special appHcation areas (see Elastomers, synthetic Rubber, natural). [Pg.296]

Nitrile Rubber (NBR). This is the most solvent-resistant of the synthetic elastomers, except for Thiokol, which, however, has rather severe limitations. NBR was developed both in Germany and the United States by private industry prior to World War II. It is a copolymer of butadiene, CH2=CH—CH=CH2, and acrylonitrile, CH2=CHCN, corresponding to the molecular stmcture shown in Table 1. [Pg.469]

The earliest study describing vulcanised polymers of esters of acryUc acid was carried out in Germany by Rohm (2) before World War I. The first commercial acryUc elastomers were produced in the United States in the 1940s (3—5). They were homopolymers and copolymers of ethyl acrylate and other alkyl acrylates, with a preference for poly(ethyl acrylate) [9003-32-17, due to its superior balance of properties. The main drawback of these products was the vulcanisation. The fully saturated chemical stmcture of the polymeric backbone in fact is inactive toward the classical accelerators and curing systems. As a consequence they requited the use of aggressive and not versatile compounds such as strong bases, eg, sodium metasiUcate pentahydrate. To overcome this limitation, monomers containing a reactive moiety were incorporated in the polymer backbone by copolymerisation with the usual alkyl acrylates. [Pg.474]

Prior to butyl mbber, the known natural and synthetic elastomers had reactive sites at every monomer unit. Unlike natural mbber, polychloroprene, and polybutadiene, butyl mbber had widely spaced olefin sites with aHyUc hydrogens. This led to the principle of limited functionahty synthetic elastomers that was later appHed to other synthetic elastomers, eg, chlorosulfonated polyethylene, siUcone mbber, and ethylene—propylene terpolymers. [Pg.480]

Properties and Applieations. Aryloxyphosphazene elastomers using phenoxy and J-ethylphenoxy substituents have found interest in a number of appHcations involving fire safety. This elastomer has a limiting oxygen index of 28 and contains essentially no halogens. It may be cured using either peroxide or sulfur. Peroxide cures do not require the allyhc cute monomer. Gum physical properties are as follows (17) ... [Pg.528]

Commercially, anionic polymerization is limited to three monomers styrene, butadiene, and isoprene [78-79-5], therefore only two useful A—B—A block copolymers, S—B—S and S—I—S, can be produced direcdy. In both cases, the elastomer segments contain double bonds which are reactive and limit the stabhity of the product. To improve stabhity, the polybutadiene mid-segment can be polymerized as a random mixture of two stmctural forms, the 1,4 and 1,2 isomers, by addition of an inert polar material to the polymerization solvent ethers and amines have been suggested for this purpose (46). Upon hydrogenation, these isomers give a copolymer of ethylene and butylene. [Pg.15]


See other pages where Elastomers limitations is mentioned: [Pg.1830]    [Pg.1589]    [Pg.2292]    [Pg.2275]    [Pg.1834]    [Pg.50]    [Pg.550]    [Pg.1830]    [Pg.1589]    [Pg.2292]    [Pg.2275]    [Pg.1834]    [Pg.50]    [Pg.550]    [Pg.5]    [Pg.154]    [Pg.308]    [Pg.468]    [Pg.92]    [Pg.222]    [Pg.329]    [Pg.376]    [Pg.512]    [Pg.367]    [Pg.236]    [Pg.251]    [Pg.12]    [Pg.245]    [Pg.245]    [Pg.408]    [Pg.296]    [Pg.298]    [Pg.478]    [Pg.485]    [Pg.548]    [Pg.557]    [Pg.13]   
See also in sourсe #XX -- [ Pg.794 ]




SEARCH



© 2024 chempedia.info