Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Automobiles polymer applications

Neither the uniform strain model nor the uniform stress model is appropriate for this microstructure. Consequently, the elastic moduli of polyurethanes lie between the limits set by Eqs (4.11) and (4.12). For a network chain of Me = 6000, the rubber elasticity theory of Eq. (3.20) predicts a shear modulus of about 0.4 MPa. The hard blocks will have the typical 3GPa Young s modulus of glassy polymers. Increases in the hard block content cause the Young s modulus to increase from 30 to 500 MPa (Fig. 7.13). For automobile panel applications it is usual to have a high per cent of hard blocks so that the room temperature flexural modulus is 500 MPa. [Pg.116]

Polycarbonates are well known to be typical amorphous polymers and to have excellent properties such as heat resistance, impact resistance, transparency, and dimensional stability (2-5). Polycarbonates, therefore, have been widely employed in various applications from nursing bottles to precision instruments (CDs, cameras, etc.), or in structural materials (for electrical applications, electronics, automobiles, construction applications, etc.). The global demand of polycarbonates has been growing more than 10% per year. The production capacity of polycarbonate world wide is about 1 million tons per year, and the boom in polycarbonate plant construction continues. Almost all of the polycarbonates, however, have been produced by the Phosgene Process . [Pg.21]

A new area of development is to incorporate the filler permanently into the polymer matrix, by use of coupling reactions. This can increase impact strength and thermal properties of polyamides and modify the anisotropy of partially crystalline plastics, such as polyamides and polyesters. In polypropylene, bonding with kaolin can also improve scratch resistance, which is a useful benefit for automobile interior applications. Surface modification of fillers such as silica, mica, and wollastonite allows these to penetrate markets that were formerly the province of reinforcements such as carbon black and glass fibre. [Pg.7]

Thin films have become ubiquitous in the polymer industry. Fueled by the microelectronics industry and its need for miniature parts, polymer applications have become more demanding. Polymers in these environments have been tested and modeled in laboratories around the world from universities to automobile companies, research surrounding thin films is quickly growing. ... [Pg.5]

The development of new polymer alloys has caused a lot of excitement in recent years but in fact the concept has been around for a long time. Indeed one of the major commercial successes of today, ABS, is in fact an alloy of acrylonitrile, butadiene and styrene. The principle of alloying plastics is similar to that of alloying metals - to achieve in one material the advantages possessed by several others. The recent increased interest and activity in the field of polymer alloys has occurred as a result of several new factors. One is the development of more sophisticated techniques for combining plastics which were previously considered to be incompatible. Another is the keen competition for a share of new market areas such as automobile bumpers, body panels etc. These applications call for combinations of properties not previously available in a single plastic and it has been found that it is less expensive to combine existing plastics than to develop a new monomer on which to base the new plastic. [Pg.11]

One technical difficulty that does beset recycling is that in many applications a variety of polymers are employed together in a complex way. It therefore becomes essential to distinguish between the various types of polymer in order to separate them. One system proposed (but not yet introduced anywhere in the world) is for the individual polymer components of complex articles such as automobiles to be identified using computer-scannable bar codes on each individual polymer component. [Pg.166]

Polymers that are rigid at high temperatures are known as engineering plastics . This class of polymers includes polyacetal and many nylons. These polymers are used in applications such as small gears in office equipment and under the hood of automobiles. [Pg.36]

We use a variant of flexural testing to measure a sample s heat distortion temperature. In this test, we place the sample in a three point bending fixture, as shown in Fig. 8.6 b), and apply a load sufficient to generate a standard stress within it. We then ramp the temperature of the sample at a fixed rate and note the temperature at which the beam deflects by a specified amount. This test is very useful when selecting polymers for engineering applications that are used under severe conditions, such as under the hoods of automobiles or as gears in many small appliances or inside power tools where heat tends to accumulate. [Pg.164]

We use variants of profile extrusion to produce tubing -with diameters of less then 1 mm and pipes with diameters exceeding 1 m, Wall thicknesses can vary from a few tens of micrometers up to several centimeters. Extruded window and door frames are more complex than pipes. Such profiles are largely hollow with internal ribs and fins that reinforce and divide the interior into two or more channels. We use solid rubber profiles in applications such as door seals and windshield wipers. We can produce foamed extrudates by incorporating a blowing agent, such as butane or carbon dioxide, into the polymer in the molten state. As the polymer exits the die, its internal pressure drops and the dissolved gas expands to form bubbles within the product. Examples of foamed extrudates include pipe insulation and automobile door gaskets. [Pg.218]

Among the spectrum of melt-spinnable fibers such as polyolefins and nylons, PET stands at the upper end in terms of crystalline melt temperature and glass transition temperature. This provides superior dimensional stability for applications where moderately elevated temperatures are encountered, e.g. in automobile tires or in home laundering and drying of garments. The high thermal stability results from the aromatic rings that hinder the mobility of the polymer chain. [Pg.408]

There has been an accelerated interest in polymer electrolyte fuel cells within the last few years, which has led to improvements in both cost and performance. Development has reached the point where motive power applications appear achievable at an acceptable cost for commercial markets. Noticeable accomplishments in the technology, which have been published, have been made at Ballard Power Systems. PEFC operation at ambient pressure has been validated for over 25,000 hours with a six-cell stack without forced air flow, humidification, or active cooling (17). Complete fuel cell systems have been demonstrated for a number of transportation applications including public transit buses and passenger automobiles. Recent development has focused on cost reduction and high volume manufacture for the catalyst, membranes, and bipolar plates. [Pg.81]

Numerous demonstrations in recent years have shown that the level of performance of present-day polymer electrolyte fuel cells can compete with current energy conversion technologies in power densities and energy efficiencies. However, for large-scale commercialization in automobile and portable applications, the merit function of fuel cell systems—namely, the ratio of power density to cost—must be improved by a factor of 10 or more. Clever engineering and empirical optimization of cells and stacks alone cannot achieve such ambitious performance and cost targets. [Pg.419]

Do you think that daily life would have been easier and colourful without the discovery and varied applications of polymers The use of polymers in the manufacture of plastic buckets, cups and saucers, children s toys, packaging bags, synthetic clothing materials, automobile tyres, gears and seals, electrical Insulating materials and machine parts has completely revolutionised the daily life as well as the industrial scenario. Indeed, the polymers are the backbone of four major Industries viz. plastics, elastomers, fibres and paints and varnishes. [Pg.134]

Butadiene can form three repeat units as described in structure 5.47 1,2 cw-1,4 and trans-, A. Commercial polybutadiene is mainly composed of, A-cis isomer and known as butadiene rubber (BR). In general, butadiene is polymerized using stereoregulating catalysts. The composition of the resulting polybutadiene is quite dependent on the nature of the catalyst such that almost total trans-, A, cis-, A, or 1,2 units can be formed as well as almost any combination of these units. The most important single application of polybutadiene polymers is its use in automotive tires where over 10 t are used yearly in the U.S. manufacture of automobile tires. BR is usually blended with NR or SBR to improve tire tread performance, particularly wear resistance. [Pg.162]

Wire is coated by being passed through a plastic extruder, but most materials are coated with solutions, emulsions, or hot powders. The classic brushing process has been replaced by roll coating, spraying, and hot powder coating. The application of polymers from water dispersions to large objects, such as automobile frames, has been improved by electrode-positon of the polymer onto the metal surface. [Pg.558]

More than 800 million pounds of EPM and EPDM polymers were produced in the United States in 2001. Their volume ranks these materials fourth behind styrene-1,3-butadiene copolymers, poly( 1,4-butadiene), and butyl rubber as synthetic rubbers. EPM and EPDM polymers have good chemical resistance, especially toward ozone. They are very cost-effective products since physical properties are retained when blended with large amounts of fillers and oil. Applications include automobile radiator hose, weather stripping, and roofing membrane. [Pg.698]

Polymer-clay nanocomposites (PCN) are a class of hybrid materials composed of organic polymer matrices and organophilic clay fillers, introduced in late 1980s by the researchers of Toyota (Kawasumi, 2004). They observed an increase in mechanical and thermal properties of nylons with the addition of a small amount of nano-sized clays. This new and emerging class of pol miers has found several applications in the food and non-food sectors, such as in constmction, automobiles, aerospace, military, electronics, food packaging and coatings, because of its superior mechanical strength, heat and flame resistance and improved barrier properties (Ray et al., 2006). [Pg.427]


See other pages where Automobiles polymer applications is mentioned: [Pg.503]    [Pg.503]    [Pg.44]    [Pg.7858]    [Pg.8074]    [Pg.319]    [Pg.1124]    [Pg.133]    [Pg.186]    [Pg.308]    [Pg.265]    [Pg.453]    [Pg.677]    [Pg.355]    [Pg.483]    [Pg.3]    [Pg.530]    [Pg.77]    [Pg.61]    [Pg.1022]    [Pg.120]    [Pg.166]    [Pg.271]    [Pg.369]    [Pg.162]    [Pg.96]    [Pg.230]    [Pg.609]    [Pg.230]    [Pg.35]    [Pg.142]    [Pg.698]    [Pg.25]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Applications automobile

Automobile industry polymer applications

Automobiles

POLYMERS IN AUTOMOBILE APPLICATIONS

© 2024 chempedia.info