Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic surface defects

Dislocation theory as a portion of the subject of solid-state physics is somewhat beyond the scope of this book, but it is desirable to examine the subject briefly in terms of its implications in surface chemistry. Perhaps the most elementary type of defect is that of an extra or interstitial atom—Frenkel defect [110]—or a missing atom or vacancy—Schottky defect [111]. Such point defects play an important role in the treatment of diffusion and electrical conductivities in solids and the solubility of a salt in the host lattice of another or different valence type [112]. Point defects have a thermodynamic basis for their existence in terms of the energy and entropy of their formation, the situation is similar to the formation of isolated holes and erratic atoms on a surface. Dislocations, on the other hand, may be viewed as an organized concentration of point defects they are lattice defects and play an important role in the mechanism of the plastic deformation of solids. Lattice defects or dislocations are not thermodynamic in the sense of the point defects their formation is intimately connected with the mechanism of nucleation and crystal growth (see Section IX-4), and they constitute an important source of surface imperfection. [Pg.275]

The analogy of a crystal surface as a diffraction grating also suggests how surface defects can be probed. Recall that for a diffraction grating the width of a diffracted peak will decrease as the number of lines in the grating is increased. This observation can be used in interpreting the shape of RHEED spots. Defects on a crystal surfr.ee can limit the number of atomic rows that scatter coherendy, thereby broadening RHEED features. [Pg.266]

At smooth metal electrodes that have been subjected to annealing, the number of different crystallographic defects (dislocations, kinks, etc.) emerging at the surface is between 10 and lO cm. This number is small relative to the total number of surface atoms (which is on the order of 10 cm ). In the literature, attempts have been described to determine the catalytic activity of electrodes having an artihcially boosted number of surface defects. These experiments gave no unambiguous results in some cases some increase, in other cases some decrease in activity was observed. [Pg.534]

Molecular dynamics simulations have also been used to study the effect of the presence of surface defects and the distribution of ions at the electrochemical double layer. The classical approach described previously has been challenged in recent times through the use of models that involve the calculation of both atomic and the electronic structures of the interface, as made by J. W. Halley et al. (1998). [Pg.665]

In above sections the main attention has been paid to adsorption-caused change in electrophysical characteristics of semiconductor adsorbent caused by surface charging effects. However, as it was mentioned in section 1.6, the change in electrophysical characteristics of such adsorbents can be caused by other mechanisms, e.g. by direct interaction of absorbate with the surface defects provided (as in the case of oxide adsorbents) by superstoichiometric atoms of metals and oxygen... [Pg.81]

The catalytic preformance of Co crystals with two surface conditions were compared annealed crystals with large atomically flat terraces and Ar+ ion sputtered surfaces which produced a high population of surface defects. A sequence of PM-RAIRS spectra are shown in Figure 3.2 during exposure of a sputtered Co (0001) surface to mixtures of H2 and CO, with the temperature and pressure for each spectrum indicated in the figure. [Pg.45]

Since the most active catalytic sites are usually steps, kinks, and surface defects, atomically resolved structural information including atomic distribution and surface structure at low pressure, possible surface restructuring, and the mobility of adsorbate molecules and of the atoms of the catalyst surface at high temperature and high pressure is crucial to understanding catalytic mechanisms on transition metal surfaces. The importance of studying the structural evolution ofboth adsorbates... [Pg.189]

A detailed study of the C02- species on MgO has been carried out by Lunsford and Jayne 26). Electrons trapped at surface defects during UV irradiation of the sample are transferred to the CO2 molecule upon adsorption. By using 13C02 the hyperfine structure was obtained. The coupling constants are axx - 184, am = 184, and a = 230 G. An analysis of the data, similar to that carried out in Section II.B.2 for N02, indicates that the unpaired electron has 18% 2s character and 47% 2p character on the carbon atom. An OCO bond angle of 125° may be compared with an angle of 128° for CO2- in sodium formate. [Pg.315]

Field emission microscopy was the first technique capable of imaging surfaces at resolution close to atomic dimensions. The pioneer in this area was E.W. Muller, who published the field emission microscope in 1936 and later the field ion microscope in 1951 [23]. Both techniques are limited to sharp tips of high melting metals (tungsten, rhenium, rhodium, iridium, and platinum), but have been extremely useful in exploring and understanding the properties of metal surfaces. We mention the structure of clean metal surfaces, defects, order/disorder phenomena,... [Pg.191]

The REM and SREM techniques have recently been shown to be very powerful for the study of flat surfaces of large crystals or bulk specimens (19,20). Single-atom surface steps may be seen clearly with a lateral resolution of 1 nm or better and the interactions of surface steps with bulk defects can be investigated. [Pg.354]

Another important issue associated with tribological simulations involves the definition of the system to be studied. For example, a simple tribological system consists of two atomically flat, defect-free surfaces sliding past one another. Because of computational convenience, it is common... [Pg.68]

A silicon surface, no mater how well it is prepared, is not perfectly flat at the atomic scale, but has surface defects such as surface vacancies, steps, kinks sites, and dopant atoms. The dissolution of the surface is thus not uniform but modulated at the atomic scale with higher rates at the defects and depressed sites. The micro roughness of the surface will increase with the amount of dissolution due to the sensitivity of the reactions to surface curvature associated with the micro depressed sites. These sites, due to the higher dissolution rates, will evolve into pits and eventually into pores. Depending on the condition, a certain amount of dissolution is required before the initiation of pores on all types of materials. [Pg.201]


See other pages where Atomic surface defects is mentioned: [Pg.63]    [Pg.3]    [Pg.63]    [Pg.3]    [Pg.126]    [Pg.1694]    [Pg.1769]    [Pg.343]    [Pg.5]    [Pg.117]    [Pg.94]    [Pg.34]    [Pg.58]    [Pg.173]    [Pg.255]    [Pg.232]    [Pg.298]    [Pg.249]    [Pg.105]    [Pg.113]    [Pg.148]    [Pg.159]    [Pg.69]    [Pg.77]    [Pg.106]    [Pg.178]    [Pg.179]    [Pg.18]    [Pg.316]    [Pg.319]    [Pg.254]    [Pg.109]    [Pg.147]    [Pg.236]    [Pg.51]    [Pg.113]    [Pg.537]    [Pg.191]    [Pg.30]   
See also in sourсe #XX -- [ Pg.35 , Pg.36 ]




SEARCH



Atomic force microscopy surface defects

Surface atoms

Surface defects

© 2024 chempedia.info