Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Traps, electron

A typical TL glow curve can be obtained when an insulator is heated at a constant rate after being irradiated by a high-energy beam, such as UV radiation. X-rays or /-rays. The trapped electrons in the specimen are generated by the radiation. There are three different types of electron traps dielectric cavity traps, neutral molecules with a positive electron affinity and free radicals. When the excited specimen is heated, a TL glow is observed owing to the recombination of detrapped electrons [48-50]. [Pg.29]


A typical absorption curve obtained for a metal-free vitreous sihca after a large dose of y-rays is shown in Eigure 13. The main band is at 215 nm three smaller bands occur at 230, 260, and 280 nm. The 230-nm band may result from an electron trapped at a sihcon atom having an incomplete oxygen bond (205). [Pg.510]

Electrons trapped at the vacancy can become partially or fully ionized, leading to weak n-ty e electronic conduction in an electric field. Again, the conductivity is low. [Pg.362]

Shock-modified rutile is found to exhibit two characteristic resonances, which can be confidently identified as (1) an isotropic resonance characteristic of an electron trapped at a vacancy, and (2) an isotropic resonance characteristic of a Ti" interstitial. The data indicate a concentration of 2 X 10 cm , which is an order of magnitude greater than observed in hydrogen- or vacuum-induced defect studies. At higher pressures the concentration of interstitials is the same as at lower pressure, but more dispersion is observed in the wave shape, indicating higher microwave conductivity. [Pg.166]

The study of electrons trapped in matter (commonly termed solid state ) led eventually to the invention of the transistor in 1947 by Walter Brattain, John Bardeen, and William Shockley at Bell Laboratories, and then to the integrated circuit hy Robert Noyce and Jack Kilby a decade later. Use of these devices dominated the second half of the twentieth century, most notably through computers, with a significant stininlus to development being given by military expenditures. [Pg.399]

Concerning the nature of electronic traps for this class of ladder polymers, we would like to recall the experimental facts. On comparing the results of LPPP to those of poly(para-phenylene vinylene) (PPV) [38] it must be noted that the appearance of the maximum current at 167 K, for heating rates between 0.06 K/s and 0.25 K/s, can be attributed to monomolecular kinetics with non-retrapping traps [26]. In PPV the density of trap states is evaluated on the basis of a multiple trapping model [38], leading to a trap density which is comparable to the density of monomer units and very low mobilities of 10-8 cm2 V-1 s l. These values for PPV have to be compared to trap densities of 0.0002 and 0.00003 traps per monomer unit in the LPPP. As a consequence of the low trap densities, high mobility values of 0.1 cm2 V-1 s-1 for the LPPPs are obtained [39]. [Pg.154]

Figure 12-11. Thickness dependence of the electron only j(V) characteristics at L=0.22, 0.31, and 0.37 pm. Solid lines have been calculated for an exponential distribution of electron traps of the total density 101 cnTJ and a characteristic temperature T,.= 1500 K (Ref. [41[). Figure 12-11. Thickness dependence of the electron only j(V) characteristics at L=0.22, 0.31, and 0.37 pm. Solid lines have been calculated for an exponential distribution of electron traps of the total density 101 cnTJ and a characteristic temperature T,.= 1500 K (Ref. [41[).
Trilayer structures offer the additional possibility of selecting the emissive material, independent of its transport properties. In the case of small molecules, the emitter is typically added as a dopant in either the HTL or the ETL, near the interface between them, and preferably on the side where recombination occurs (see Fig. 13-1 c). The dopant is selected to have an cxciton energy less than that of its host, and a high luminescent yield. Its concentration is optimized to ensure exciton capture, while minimizing concentration quenching. As before, the details of recombination and emission depend on the energetics of all the materials. The dopant may act as an electron or hole trap, or both, in its host. Titus, for example, an electron trap in the ETL will capture and hold an election until a hole is injected nearby from the HTL. In this case, the dopant is the recombination mmo.-... [Pg.538]

The catalytic activity of doped nickel oxide on the solid state decomposition of CsN3 decreased [714] in the sequence NiO(l% Li) > NiO > NiO(l% Cr) > uncatalyzed reaction. While these results are in qualitative accordance with the assumption that the additive provided electron traps, further observations, showing that ZnO (an rc-type semi-conductor) inhibited the reaction and that CdO (also an rc-type semi-conductor) catalyzed the reaction, were not consistent with this explanation. It was noted, however, that both NiO and CdO could be reduced by the product caesium metal, whereas ZnO is not, and that the reaction with NiO yielded caesium oxide, which is identified as the active catalyst. Detailed kinetic data for these rate processes are not available but the pattern of behaviour described clearly demonstrates that the interface reactions were more complicated than had been anticipated. [Pg.266]

Figure 1 shows the ion intensity vs. the voltage between the ionization chamber and the electron trap, the voltage between filament and chamber being held constant at 8 volts. The gas was methane, in which the secondary ions CH5 + and CH4 + are formed by the following processes ... [Pg.72]

Figure 1. The tunneling of a single electron (SE) between two metal electrodes through an intermediate island (quantum dot) can be blocked of the electrostatic energy of a single excess electron trapped on the central island. In case of non-symmetric tunneling barriers (e.g. tunneling junction on the left, and ideal (infinite-resistance) capacitor on the right), this device model describes a SE box . Figure 1. The tunneling of a single electron (SE) between two metal electrodes through an intermediate island (quantum dot) can be blocked of the electrostatic energy of a single excess electron trapped on the central island. In case of non-symmetric tunneling barriers (e.g. tunneling junction on the left, and ideal (infinite-resistance) capacitor on the right), this device model describes a SE box .
Gratzel and Serpone and co-workers recently reported on a picosecond laser flash photolysis study of TiO. They observed the absorption spectrum immediately after the 30 ps flash and attributed it to electrons trapped on Ti" " ions at the surface of the colloidal particles. The absorption decayed within nanoseconds, the rate being faster as the number of photons absorbed per colloidal particle increased. This decay was attributed to the recombination of the trapped electrons with holes. [Pg.152]

Let us now return to MMCT effects in semiconductors. In this class of compounds MMCT may be followed by charge separation, i.e. the excited MMCT state may be stabilized. This is the case if the M species involved act as traps. A beautiful example is the color change of SrTiOj Fe,Mo upon irradiation [111]. In the dark, iron and molybdenum are present as Fe(III) and Mo(VI). The material is eolorless. After irradiation with 400 nm radiation Fe(IV) and Mo(V) are created. These ions have optical absorption in the visible. The Mo(VI) species plays the role of a deep electron trap. The thermal decay time of the color at room temperature is several minutes. Note that the MMCT transition Fe(III) + Mo(VI) -> Fe(IV) -I- Mo(V) belongs to the type which was treated above. In the semiconductor the iron and molybdenum species are far apart and the conduction band takes the role of electron transporter. A similar phenomenon has been reported for ZnS Eu, Cr [112]. There is a photoinduced charge separation Eu(II) -I- Cr(II) -> Eu(III) - - Cr(I) via the conduction band (see Fig. 18). [Pg.178]

X-Ray irradiation of quartz or silica particles induces an electron-trap lattice defect accompanied by a parallel increase in cytotoxicity (Davies, 1968). Aluminosilicate zeolites and clays (Laszlo, 1987) have been shown by electron spin resonance (e.s.r.) studies to involve free-radical intermediates in their catalytic activity. Generation of free radicals in solids may also occur by physical scission of chemical bonds and the consequent formation of dangling bonds , as exemplified by the freshly fractured theory of silicosis (Wright, 1950 Fubini et al., 1991). The entrapment of long-lived metastable free radicals has been shown to occur in the tar of cigarette smoke (Pryor, 1987). [Pg.248]

Electron-trap on germanium surface produced by heating in oxygen. Physic. Rev. [2] 94, 1420 (1954). [Pg.67]

Changes which prevent the effective nobility of AB [et represents an electron trapped or solvated]. [Pg.175]

A detailed study of the C02- species on MgO has been carried out by Lunsford and Jayne 26). Electrons trapped at surface defects during UV irradiation of the sample are transferred to the CO2 molecule upon adsorption. By using 13C02 the hyperfine structure was obtained. The coupling constants are axx - 184, am = 184, and a = 230 G. An analysis of the data, similar to that carried out in Section II.B.2 for N02, indicates that the unpaired electron has 18% 2s character and 47% 2p character on the carbon atom. An OCO bond angle of 125° may be compared with an angle of 128° for CO2- in sodium formate. [Pg.315]


See other pages where Traps, electron is mentioned: [Pg.223]    [Pg.446]    [Pg.448]    [Pg.448]    [Pg.452]    [Pg.453]    [Pg.332]    [Pg.361]    [Pg.465]    [Pg.107]    [Pg.270]    [Pg.657]    [Pg.516]    [Pg.53]    [Pg.162]    [Pg.163]    [Pg.246]    [Pg.266]    [Pg.71]    [Pg.220]    [Pg.266]    [Pg.405]    [Pg.524]    [Pg.308]    [Pg.310]    [Pg.178]    [Pg.585]    [Pg.111]    [Pg.328]    [Pg.124]    [Pg.249]    [Pg.316]    [Pg.317]    [Pg.317]    [Pg.319]   
See also in sourсe #XX -- [ Pg.159 , Pg.163 , Pg.164 , Pg.167 , Pg.169 , Pg.272 , Pg.322 ]

See also in sourсe #XX -- [ Pg.145 ]

See also in sourсe #XX -- [ Pg.145 ]

See also in sourсe #XX -- [ Pg.73 , Pg.74 , Pg.76 ]

See also in sourсe #XX -- [ Pg.94 ]

See also in sourсe #XX -- [ Pg.190 , Pg.191 , Pg.285 ]

See also in sourсe #XX -- [ Pg.29 ]

See also in sourсe #XX -- [ Pg.158 ]




SEARCH



Electronic trap

© 2024 chempedia.info