Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic absorption spectrometry, lead

Hirao et al. [964] concentrated lead in seawater using a chloroform solution of dithizone and determined it in amounts down to 40 pg/1 by graphite furnace atomic absorption spectrometry. Lead in 1 kg acidified seawater was... [Pg.187]

When using atomic absorption spectrometry lead is concentrated in the form of a complex salt of 1-pyrrolidine dithiocarboxylic acid in methyl isobutyl ketone. Absorbance of the lead line is measured at 283.8 or 217 nm. The method is used for concentrations of lead > 0.01 mg 1 [13]. [Pg.311]

Lead in soil slurries Electrothermal atomic absorption spectrometry... [Pg.318]

The element specificity of atomic absorption spectrometry has also been used in conjunction with gas chromatography to separate and determine organo-metallic compounds of similar chemical composition, e.g. alkyl leads in petroleum here lead is determined by AAS for each compound as it passes from the gas chromatograph.75... [Pg.244]

Hohnadel, D. C., Sunderman, F. W., Jr., Nechay, M. W., and McNeely, M. D. "Atomic Absorption Spectrometry of Nickel, Copper, Zinc, and Lead In Sweat from Healthy Subjects during Sauna Bathing". Clin. Chem. (1973), 19, 1288-1292. [Pg.265]

MDHS 6/3 Lead and inorganic compounds of lead in air (atomic absorption spectrometry)... [Pg.580]

Backmank S, Karlsson RW (1979) Determination of lead, bismuth, zinc, silver and antimony in steel and nickel-base alloys by atomic-absorption spectrometry using direct atomization of solid samples in a graphite furnace. Analyst 104 1017-1029. [Pg.148]

Acar 0, Kn ic Z, Turker AR (1999) Determination of bismuth, indium and lead in geological and sea-water samples by electrothermal atomic absorption spectrometry with nickel containing chemical modifiers. Anal Chim Acta 382 329-338. [Pg.277]

Atomic absorption spectrometry in general leads to some 1000 papers yearly. [Pg.613]

MDHS 14 General method for the gravimetric determination of respirable and total dust MDHS 15 Carbon disulphide MDHS 16 Mercury vapour in air Laboratory method using hopcalite adsorbent tubes, and acid dissolution with cold vapour atomic absorption spectrometric analysis MDHS 17 Benzene in air Laboratory method using charcoal adsorbent tubes, solvent desorption and gas chromatography MDHS 18 Tetra alkyl lead compounds in air Continuous on-site monitoring method using PAC Check atomic absorption spectrometry... [Pg.246]

The low concentrations of lead in plasma, relative to red blood cells, has made it extremely difficult to accurately measure plasma lead concentrations in humans, particularly at low PbB concentrations (i.e., less than 20 pg/dL). However, more recent measurements have been achieved with inductively coupled mass spectrometry (ICP-MS), which has a higher analytical sensitivity than earlier atomic absorption spectrometry methods. Using this analytical technique, recent studies have shown that plasma lead concentrations may correlate more strongly with bone lead levels than do PbB concentrations (Cake et al. 1996 Hemandez-Avila et al. 1998). The above studies were conducted in adults, similar studies of children have not been reported. [Pg.313]

Test Methods for Lead in Gasoline Method 1-Standard method test for lead in gasoline by atomic absorption spectrometry Yes 40 CFR 80, App. B EPA 1974... [Pg.470]

Aguilera de Benzo Z, Fraile R, Carrion N, et al. 1989. Determination of lead in whole blood by electrothermal atomization atomic absorption spectrometry using tube and platform atomizers and dilution with Triton X-100. Journal of Analytical and Atmospheric Spectrometry 4 397-400. [Pg.484]

Aroza I, Bonilla M, Madrid Y, et al. 1989. Combination of hydride generation and graphite furnace atomic absorption spectrometry for the determination of lead in biological samples. J Anal Atmos Spectra 4 163-166. [Pg.488]

Ellen G, Van Loon JW. 1990. Determination of cadmium and lead in foods by graphite furnace atomic absorption spectrometry with Zeeman background correction Test with certified reference materials. Food Addit Contam 7 265-273. [Pg.511]

Samanta G, Chakraborti D. 1996. Flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) and spectrophotometric methods for determination of lead in environmental samples. Environmental Technology 17(12) 1327-1337. [Pg.571]

Xu Y, Liang Y. 1997. Combined nickel and phosphate modifier for lead determination in water by electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 12(4) 471-474. [Pg.588]

Zhang Z-W, Shimbo S, Ochi N, et al. 1997. Determination of lead and cadmium in food and blood by inductively coupled plasma mass spectrometry a comparison with graphite furnace atomic absorption spectrometry. Science of the Total Environment 205(2-3) 179-187. [Pg.589]

Ho M.D., Evans G.J. Operational speciation of cadmium, copper, lead and zinc in the NIST standard reference materials 2710 and 2711 (Montana soil) by the BCR sequential extraction procedure and flame atomic absorption spectrometry. Anal Commun 1997 34 353-364. [Pg.339]

Mercury was determined after suitable digestion by the cold vapour atomic absorption method [40]. Lead was determined after digestion by a stable isotope dilution technique [41-43]. Copper, lead, cadmium, nickel, and cobalt were determined by differential pulse polarography following concentration by Chelex 100 ion-exchange resin [44,45], and also by the Freon TF extraction technique [46]. Manganese was determined by flameless atomic absorption spectrometry (FAA). [Pg.34]

The following analytical techniques seem to be adequate for the concentrations under consideration copper and nickel by Freon extraction and FAA cold vapour atomic absorption spectrometry, cobalt by Chelex extraction and differential pulse polarography, mercury by cold vapour atomic absorption absorptiometry, lead by isotope dilution plus clean room manipulation and mass spectrometry. These techniques may be used to detect changes in the above elements for storage tests Cu at 8 nmol/kg, Ni at 5 nmol/kg, Co at 0.5 nmol/kg, Hg at 0.1 nmol/kg, and Pb at 0.7 nmol/kg. [Pg.36]

Various workers [361-365] have applied graphite furnace atomic absorption spectrometry to the determination of lead in seawater. [Pg.185]

In contrast, the coupling of electrochemical and spectroscopic techniques, e.g., electrodeposition of a metal followed by detection by atomic absorption spectrometry, has received limited attention. Wire filaments, graphite rods, pyrolytic graphite tubes, and hanging drop mercury electrodes have been tested [383-394] for electrochemical preconcentration of the analyte to be determined by atomic absorption spectroscopy. However, these ex situ preconcentration methods are often characterised by unavoidable irreproducibility, contaminations arising from handling of the support, and detection limits unsuitable for lead detection at sub-ppb levels. [Pg.186]

Armannsson [659] has described a procedure involving dithizone extraction and flame atomic absorption spectrometry for the determination of cadmium, zinc, lead, copper, nickel, cobalt, and silver in seawater. In this procedure 500 ml of seawater taken in a plastic container is exposed to a 1000 W mercury arc lamp for 5-15 h to break down metal organic complexes. The solution is adjusted to pH 8, and 10 ml of 0.2% dithizone in chloroform added. The 10 ml of chloroform is run off and after adjustment to pH 9.5 the aqueous phase is extracted with a further 10 ml of dithizone. The combined extracts are washed with 50 ml of dilute ammonia. To the organic phases is added 50 ml of 0.2 M-hydrochloric acid. The phases are separated and the aqueous portion washed with 5 ml of chloroform. The aqueous portion is evaporated to dryness and the residue dissolved in 5 ml of 2 M hydrochloric acid (solution A). Perchloric acid (3 ml) is added to the organic portion, evaporated to dryness, and a further 2 ml of 60% perchloric acid added to ensure that all organic matter has been... [Pg.237]

Fang et al. [661] have described a flow injection system with online ion exchange preconcentration on dual columns for the determination of trace amounts of heavy metal at pg/1 and sub-pg/1 levels by flame atomic absorption spectrometry (Fig. 5.17). The degree of preconcentration ranges from a factor of 50 to 105 for different elements, at a sampling frequency of 60 samples per hour. The detection limits for copper, zinc, lead, and cadmium are 0.07, 0.03, 0.5, and 0.05 pg/1, respectively. Relative standard deviations are 1.2-3.2% at pg/1 levels. The behaviour of the various chelating exchangers used was studied with respect to their preconcentration characteristics, with special emphasis on interferences encountered in the analysis of seawater. [Pg.238]

Zhuang et al. [664] used palladium salts as a coprecipitation carrier for the concentration of cadmium, cobalt, and lead in seawater prior to analysis by atomic absorption spectrometry. [Pg.239]

Jin [666] used ammonium pyrrolidine dithiocarbamate and electrothermal atomic absorption spectrometry to determine lead, cadmium, copper, cobalt, tin, and molybdenum in seawater. [Pg.239]

Rodionova and Ivanov [667] used chelate extraction in the determination of copper, bismuth, lead, cadmium, and zinc in seawater. The metal complexes of diethyl and dithiophosphates are extracted in carbon tetrachloride prior to determination by atomic absorption spectrometry. [Pg.239]


See other pages where Atomic absorption spectrometry, lead is mentioned: [Pg.134]    [Pg.160]    [Pg.236]    [Pg.319]    [Pg.362]    [Pg.239]    [Pg.248]    [Pg.267]    [Pg.319]    [Pg.362]    [Pg.61]    [Pg.205]    [Pg.112]    [Pg.973]    [Pg.246]    [Pg.221]    [Pg.443]    [Pg.455]    [Pg.188]   


SEARCH



Absorption spectrometry

Atomic absorption spectrometry

Atomic absorption spectrometry atomizers

Lead atoms

© 2024 chempedia.info