Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic hydrocarbons intermediates

More information has appeared concerning the nature of the side reactions, such as acetoxylation, which occur when certain methylated aromatic hydrocarbons are treated with mixtures prepared from nitric acid and acetic anhydride. Blackstock, Fischer, Richards, Vaughan and Wright have provided excellent evidence in support of a suggested ( 5.3.5) addition-elimination route towards 3,4-dimethylphenyl acetate in the reaction of o-xylene. Two intermediates were isolated, both of which gave rise to 3,4-dimethylphenyl acetate in aqueous acidic media and when subjected to vapour phase chromatography. One was positively identified, by ultraviolet, infra-red, n.m.r., and mass spectrometric studies, as the compound (l). The other was less stable and less well identified, but could be (ll). [Pg.222]

Cyclic Hydrocarbons. The cyclic hydrocarbon intermediates are derived principally from petroleum and natural gas, though small amounts are derived from coal. Most cycHc intermediates are used in the manufacture of more advanced synthetic organic chemicals and finished products such as dyes, medicinal chemicals, elastomers, pesticides, and plastics and resins. Table 6 details the production and sales of cycHc intermediates in 1991. Benzene (qv) is the largest volume aromatic compound used in the chemical industry. It is extracted from catalytic reformates in refineries, and is produced by the dealkylation of toluene (qv) (see also BTX Processing). [Pg.367]

Dyes, Dye Intermediates, and Naphthalene. Several thousand different synthetic dyes are known, having a total worldwide consumption of 298 million kg/yr (see Dyes AND dye intermediates). Many dyes contain some form of sulfonate as —SO H, —SO Na, or —SO2NH2. Acid dyes, solvent dyes, basic dyes, disperse dyes, fiber-reactive dyes, and vat dyes can have one or more sulfonic acid groups incorporated into their molecular stmcture. The raw materials used for the manufacture of dyes are mainly aromatic hydrocarbons (67—74) and include ben2ene, toluene, naphthalene, anthracene, pyrene, phenol (qv), pyridine, and carba2ole. Anthraquinone sulfonic acid is an important dye intermediate and is prepared by sulfonation of anthraquinone using sulfur trioxide and sulfuric acid. [Pg.79]

Unbumed Hydrocarbons Various unburned hydrocarbon species may be emitted from hydrocarbon flames. In general, there are two classes of unburned hydrocarbons (1) small molecules that are the intermediate products of combustion (for example, formaldehyde) and (2) larger molecules that are formed by pyro-synthesis in hot, fuel-rich zones within flames, e.g., benzene, toluene, xylene, and various polycyclic aromatic hydrocarbons (PAHs). Many of these species are listed as Hazardous Air Pollutants (HAPs) in Title III of the Clean Air Act Amendment of 1990 and are therefore of particular concern. In a well-adjusted combustion system, emission or HAPs is extremely low (typically, parts per trillion to parts per billion). However, emission of certain HAPs may be of concern in poorly designed or maladjusted systems. [Pg.2383]

Aromatic ethers and furans undergo alkoxylation by addition upon electrolysis in an alcohol containing a suitable electrolyte.Other compounds such as aromatic hydrocarbons, alkenes, A -alkyl amides, and ethers lead to alkoxylated products by substitution. Two mechanisms for these electrochemical alkoxylations are currently discussed. The first one consists of direct oxidation of the substrate to give the radical cation which reacts with the alcohol, followed by reoxidation of the intermediate radical and either alcoholysis or elimination of a proton to the final product. In the second mechanism the primary step is the oxidation of the alcoholate to give an alkoxyl radical which then reacts with the substrate, the consequent steps then being the same as above. The formation of quinone acetals in particular seems to proceed via the second mechanism. ... [Pg.94]

In appearance and on handling the material is somewhat intermediate between a wax and a rubber. It is also semi-tacky. Like isotactic polypropylene it is attacked by oxygen but unlike the isotactic material it swells extensively in aliphatic and aromatic hydrocarbons at room temperature. It is also compatible with mineral fillers, bitumens and many resins. [Pg.267]

The polycyclic aromatic hydrocarbons such as naphthalene, anthracene, and phenan-threne undergo electrophilic aromatic substitution and are generally more reactive than benzene. One reason is that the activation energy for formation of the c-complex is lower than for benzene because more of the initial resonance stabilization is retained in intermediates that have a fused benzene ring. [Pg.568]

Many of the reactions of BF3 are of the Friedel-Crafts type though they are perhaps not strictly catalytic since BF3 is required in essentially equimolar quantities with the reactant. The mechanism is not always fully understood but it is generally agreed that in most cases ionic intermediates are produced by or promoted by the formation of a BX3 complex electrophilic attack of the substrate by the cation so produced completes the process. For example, in the Friedel-Crafts-type alkylation of aromatic hydrocarbons ... [Pg.199]

Natural gas and crude oils are the main sources for hydrocarbon intermediates or secondary raw materials for the production of petrochemicals. From natural gas, ethane and LPG are recovered for use as intermediates in the production of olefins and diolefms. Important chemicals such as methanol and ammonia are also based on methane via synthesis gas. On the other hand, refinery gases from different crude oil processing schemes are important sources for olefins and LPG. Crude oil distillates and residues are precursors for olefins and aromatics via cracking and reforming processes. This chapter reviews the properties of the different hydrocarbon intermediates—paraffins, olefins, diolefms, and aromatics. Petroleum fractions and residues as mixtures of different hydrocarbon classes and hydrocarbon derivatives are discussed separately at the end of the chapter. [Pg.29]

In Europe naphtha is the preferred feedstock for the production of synthesis gas, which is used to synthesize methanol and ammonia (Chapter 4). Another important role for naphtha is its use as a feedstock for steam cracking units for light olefins production (Chapter 3). Heavy naphtha, on the other hand, is a major feedstock for catalytic reforming. The product reformate containing a high percentage of Ce-Cg aromatic hydrocarbons is used to make gasoline. Reformates are also extracted to separate the aromatics as intermediates for petrochemicals. [Pg.182]

The petrochemical industry is mainly based on three types of intermediates, which are derived from the primary raw materials. These are the C2-C4 olefins, the Ce-Cg aromatic hydrocarbons, and synthesis gas (an H2/CO2 mixture). [Pg.402]

Epoxides are often encountered in nature, both as intermediates in key biosynthetic pathways and as secondary metabolites. The selective epoxidation of squa-lene, resulting in 2,3-squalene oxide, for example, is the prelude to the remarkable olefin oligomerization cascade that creates the steroid nucleus [7]. Tetrahydrodiols, the ultimate products of metabolism of polycyclic aromatic hydrocarbons, bind to the nucleic acids of mammalian cells and are implicated in carcinogenesis [8], In organic synthesis, epoxides are invaluable building blocks for introduction of diverse functionality into the hydrocarbon backbone in a 1,2-fashion. It is therefore not surprising that chemistry of epoxides has received much attention [9]. [Pg.447]

The advantages of the method are that the entire sequence is carried out in the same reaction vessel without isolation or purification of intermediates. The procedure consumes only a few hours, and in most cases the isolated yield of the aromatic hydrocarbon is excellent. [Pg.9]

The formation and reaction of peroxyl radicals derived by reaction of tervalent phosphorus compounds with oxygen have attracted interest. Photolysis of trialkyl phosphites in oxygenated solutions of aromatic hydrocarbons gives phenols. " Phosphorus trichloride reacts with 1,2-dichloroethylene, in the presence of oxygen, to give (17). It is tempting to suggest that both reactions occur via similar intermediates, e.g. (15) and (16). [Pg.232]

The poor regioselectivity of alkyne insertion in our polycychc aromatic hydrocarbon synthesis (Scheme 17) suggested to us that perhaps the palladium intermediate in that process was actually undergoing migration from one aromatic ring to the other, perhaps by a Pd(IV) hydride intermediate, to establish an equilibrium mixture of two regioisomeric arylpalladium intermediates under our reaction conditions (Scheme 18). This, indeed, appears to be true as... [Pg.441]

This chemistry becomes synthetically useful when one of the isomeric palladium intermediates can react with a neighboring substituent and the other isomer cannot. Thus, we have taken advantage of this effect to synthesize a range of polycyclic aromatic hydrocarbons by Pd migration and subsequent arylation (Scheme 24).21 This provides a unique way to form new carbon-carbon bonds in a location remote from the original functionality. [Pg.443]

Among the wide variety of organic reactions in which zeolites have been employed as catalysts, may be emphasized the transformations of aromatic hydrocarbons of importance in petrochemistry, and in the synthesis of intermediates for pharmaceutical or fragrance products.5 In particular, Friede 1-Crafts acylation and alkylation over zeolites have been widely used for the synthesis of fine chemicals.6 Insights into the mechanism of aromatic acylation over zeolites have been disclosed.7 The production of ethylbenzene from benzene and ethylene, catalyzed by HZSM-5 zeolite and developed by the Mobil-Badger Company, was the first commercialized industrial process for aromatic alkylation over zeolites.8 Other typical examples of zeolite-mediated Friedel-Crafts reactions are the regioselective formation of p-xylene by alkylation of toluene with methanol over HZSM-5,9 or the regioselective p-acylation of toluene with acetic anhydride over HBEA zeolites.10 In both transformations, the p-isomers are obtained in nearly quantitative yield. [Pg.32]

The preparation of imines, enamines, nitroalkenes and N-sulfonylimines proceeds via the azeotropic removal of water from the intermediate in reactions that are normally catalyzed by p-toluenesulfonic acid, titanium(IV) chloride, or montmorillonite K 10 clay. A Dean-Stark apparatus is traditionally used which requires a large excess of aromatic hydrocarbons such as benzene or toluene for azeotropic water elimination. [Pg.192]

The NO + 03 chemiluminescent reaction [Reactions (1-3)] is utilized in two commercially available GC detectors, the TEA detector, manufactured by Thermal Electric Corporation (Saddle Brook, NJ), and two nitrogen-selective detectors, manufactured by Thermal Electric Corporation and Antek Instruments, respectively. The TEA detector provides a highly sensitive and selective means of analyzing samples for A-nitrosamines, many of which are known carcinogens. These compounds can be found in such diverse matrices as foods, cosmetics, tobacco products, and environmental samples of soil and water. The TEA detector can also be used to quantify nitroaromatics. This class of compounds includes many explosives and various reactive intermediates used in the chemical industry [121]. Several nitroaromatics are known carcinogens, and are found as environmental contaminants. They have been repeatedly identified in organic aerosol particles, formed from the reaction of polycyclic aromatic hydrocarbons with atmospheric nitric acid at the particle surface [122-124], The TEA detector is extremely selective, which aids analyses in complex matrices, but also severely limits the number of potential applications for the detector [125-127],... [Pg.381]


See other pages where Aromatic hydrocarbons intermediates is mentioned: [Pg.933]    [Pg.933]    [Pg.389]    [Pg.133]    [Pg.270]    [Pg.108]    [Pg.37]    [Pg.788]    [Pg.124]    [Pg.125]    [Pg.981]    [Pg.310]    [Pg.310]    [Pg.49]    [Pg.32]    [Pg.317]    [Pg.478]    [Pg.944]    [Pg.98]    [Pg.202]    [Pg.24]    [Pg.101]    [Pg.9]    [Pg.17]    [Pg.92]    [Pg.424]    [Pg.944]    [Pg.382]    [Pg.256]    [Pg.199]    [Pg.463]    [Pg.49]    [Pg.279]   
See also in sourсe #XX -- [ Pg.103 , Pg.104 ]




SEARCH



Hydrocarbon intermediate

© 2024 chempedia.info