Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylations Friedel-Crafts-type

Concerning my research during my Dow years, as I discuss iu Chapter 4, my search for cationic carbon intermediates started back in Hungary, while 1 was studying Friedel-Crafts-type reactions with acyl and subsequently alkyl fluorides catalyzed by boron trifluoride. In the course of these studies I observed (and, in some cases, isolated) intermediate complexes of either donor-acceptor or ionic nature. [Pg.72]

Alkyl halides and sulfonates are the most frequently used alkylating acceptor synthons. The carbonyl group is used as the classical a -synthon. O-Silylated hemithioacetals (T.H. Chan, 1976) and fomic acid orthoesters are examples for less common a -synthons. In most synthetic reactions carbon atoms with a partial positive charge (= positively polarized carbon) are involved. More reactive, "free carbocations as occurring in Friedel-Crafts type alkylations and acylations are of comparably limited synthetic value, because they tend to react non-selectively. [Pg.15]

Fluoroalkjiations are frequentiy performed indirectly using tandem reactions. Arenes react with sodium borohydride in trifluoroacetic acid to afford otherwise difficult to obtain l,l,l-trifluoro-2,2-diarylethanes. Presumably sodium borohydride reacts initially with the trifluoroacetic acid to produce the trifluoroacetaldehyde or its equivalent, which rapidly undergoes Friedel-Crafts-type condensation to give an intermediate carbinol. The carbinol further alkylates ben2ene under the reaction conditions giving the observed product. The reaction with stericaHy crowded arenes such as mesitylene and durene... [Pg.554]

The most important appHcation of metal alkoxides in reactions of the Friedel-Crafts type is that of aluminum phenoxide as a catalyst in phenol alkylation (205). Phenol is sufficientiy acidic to react with aluminum with the formation of (CgH O)2Al. Aluminum phenoxide, when dissolved in phenol, greatiy increases the acidic strength. It is beheved that, similar to alkoxoacids (206) an aluminum phenoxoacid is formed, which is a strong conjugate acid of the type HAl(OCgH )4. This acid is then the catalyticaHy active species (see Alkoxides, metal). [Pg.564]

Although in general azoles do not undergo Friedel-Crafts type alkylation or acylation, several isolated reactions of this general type are known. 3-Phenylsydnone (120) undergoes Friedel-Crafts acetylation and Vilsmeier formylation at the 4-position, and the 5-alkylation of thiazoles by carbonium ions is known. [Pg.58]

Many of the reactions of BF3 are of the Friedel-Crafts type though they are perhaps not strictly catalytic since BF3 is required in essentially equimolar quantities with the reactant. The mechanism is not always fully understood but it is generally agreed that in most cases ionic intermediates are produced by or promoted by the formation of a BX3 complex electrophilic attack of the substrate by the cation so produced completes the process. For example, in the Friedel-Crafts-type alkylation of aromatic hydrocarbons ... [Pg.199]

The first step in the sequence may involve Friedel-Crafts-type condensation of resorcinol with the enolate of 10 to afford the unsaturated ester, 11. Alkylation of the free phenol on 12 by means of ethyl bromoacetate affords chromonar (13). ... [Pg.331]

Ethylene is an active alkylating agent. It can be used to alkylate aromatic compounds using Friedel-Crafts type catalysts. Commercially,... [Pg.210]

Ferrocene behaves in many respects like an aromatic electron-rich organic compound which is activated toward electrophilic reactions.In Friedel-Crafts type acylation of aromatic compounds with acyl halides, ferrocene is lO times more reactive than benzene and gives yields over 80%. However, ferrocene is different from benzene in respect to reactivity and yields in the Friedel-Crafts alkylation with alkyl halides or olefins. The yields of ferrocene alkylation are often very low. and the separations of the polysubstituted byproducts are tedious. [Pg.155]

Jung etal. reported the Friedel-Crafts type alkylation of ferrocene with allylchlo-rosilancs. The reaction of ferrocene with allylchlorosilanes in the presence of Lewis acid afforded regiospecific alkylated ferrocenes bearing chlorosilyl groups at the /J-carbon to the ferrocene ring (Eq. (4)). [Pg.155]

The cyclization to structurally defined, soluble LPPP takes place in a two-step sequence, consisting of a reduction of the keto group followed by ring closure of the secondary alcohol groups of 28 in a Friedel-Crafts-type alkylation. [Pg.178]

A fourfold anionic domino process consistingofadominoMichael/aldol/Michael/ aldol process was used by Koo and coworkers for the synthesis of bicyclo[3.3.1]non-anes. They employed 2 equiv. of inexpensive ethyl acetoacetate and 1 equiv. of a simple a, 3-unsaturated aldehyde [290]. Differently substituted dihydroquinolines were assembled in a Michael/aldol/elimination/Friedel-Crafts-type alkylation protocol by the Wessel group [291]. An impressive approach in this field, namely the construction of the indole moiety 2-557, which represents the middle core of the man-zamines, has been published by Marko and coworkers [292]. Manzamine A (2-555) and B (2-556) are members of this unique family of indole alkaloids which were isolated from sponges of the genus Haliclona and Pelina (Scheme 2.126) [293]. [Pg.135]

Gold-catalyzed direct C-H functionalizations enable the formation of polyalkylated arenes under mild conditions. In many cases, branched products are obtained. Two mechanisms are thought to operate with electron-rich arenes, an S si2-type mechanism via Au(lll) leads to the linear product. The branched product is obtained via a Friedel-Craft-type alkylation. A silver salt is often added and is believed to generate a more electrophilic Au(m) species. Often regioselectivities are poor and symmetric arenes are employed. Intramolecular variants as well as Michael additions are also known (Equations (72)-(74)).71,71a,71b... [Pg.124]

Extensions of the electrophilic activation of the alkyne moiety as well as an alkene moiety have been developed and applied. The applications include various reactions, for instance, Friedel-Crafts type alkylations,323 anchimeric assistance of heteroatomic moiety generally followed by rearrangements (see below), implementation of more sophisticated functional groups such as ynamides and allenynes, which are discussed below. [Pg.345]

The three-component synthesis of benzo and naphthofuran-2(3H)-ones from the corresponding aromatic alcohol (phenols or naphthols) with aldehydes and CO (5 bar) can be performed under palladium catalysis (Scheme 16) [59,60]. The mechanism involves consecutive Friedel-Crafts-type aromatic alkylation and carbonylation of an intermediate benzylpalla-dium species. The presence of acidic cocatalysts such as TFA and electron-donating substituents in ortho-position (no reaction with benzyl alcohol ) proved beneficial for both reaction steps. [Pg.224]

IrCl2H(cod)]2 catalyzed the synthesis of substituted quinolines, where the reachon of aniline derivahves, aromatic and alkyl aldehydes efficiently proceeds under an oxygen atmosphere (Scheme 11.34) [46]. The plausible mechanism consists of a Mannich reaction, a Friedel-Craft-type aromahc substituhon, dehydration, and dehydrogenation. This can be recognized as a formal [4+2] cycloaddition of N-aryl imine and enol (Scheme 11.35). [Pg.292]

Friedel-Crafts-type polyalkylations of alkyl-substituted benzenes with Ic become less difficult as the number of electron-donating methyl groups on the benzene ring increases. This is consistent with the fact that the alkylation occurs via an electrophilic substitution. The tendency of starting methylbenzenes to form rearranged products also increases in the same order from toluene to mesitylene. [Pg.55]

Scheme 9 Mechanism of a Friedel-Crafts-type alkylation of a-diazoesters... Scheme 9 Mechanism of a Friedel-Crafts-type alkylation of a-diazoesters...
In conjunction with their Friedel-Crafts alkylation, Terada et al. found phosphoric acid (R)-3m (2 mol%, R = 9-anthryl) bearing a bulky 9-anthryl group to mediate the asymmetric Friedel-Crafts-type reaction of a-diazoester 22a with iV-acylated aldimines 26 (Scheme 10). a-Diazo-P-amino esters 27 were obtained in moderate yields (62-89%) and very good enantioselectivities (91-97% ee) [20],... [Pg.405]

While its precise role remains unclear, the catalyst 3m is supposed not only to activate the electrophile (26), but also to lower the nucleophilicity of the amide nitrogen atom (Fig. 5). The latter interaction may account for a chemoselective Friedel-Crafts-type alkylation versus an aza-Darzens reaction. [Pg.405]

Typically, stoichiometric amounts of a Lewis acid such as AICI3 are required and produce stoichiometric amounts of salts and mineral acids (HX) as side products. Furthermore, undesired side reactions such as multiple alkylations and a low functional group tolerance are observed. With the need for more environmentally and economically benign processes, the development of Friedel-Crafts-type reactions using catalytic amounts of a Lewis acid catalyst is desirable. In addition, the substitution of benzyl halides for other environmentally friendly alkylating reagents constitutes an attractive goal. In particular, benzyl alcohols are suitable... [Pg.118]

The first systematic investigations of the catalytic Friedel-Crafts-type reaction with alcohols and olefines were performed by Yamamoto and colleagues. After reporting the development of a Pd-catalyzed method for the allylation of different naphthol derivatives [24], the authors used Mo(CO)g for the Friedel-Crafts-type alkylation of electron-rich arenes with allyl acetates [25], The same molybdenum catalyst was additionally used for a Friedel-Crafts-type alkylation of arenes using 1-phenylethanol and styrene as alkylating reagents [26], However, Mo(CO)g is toxic and must be handled under strictly inert conditions. Thus, more stable Lewis acids were necessary. [Pg.119]

Scheme 9 (a) Friedel-Crafts-type alkylation of P-hydroxyesters. (b) Bi(OTf)3-catalyzed synthesis of fluorenes... [Pg.122]

This first example of a Bi(OTf)3-catalyzed Friedel-Crafts alkylation originated in the following procedures, including benzylations of 2,4-pentanediones or hydroarylation and hydroalkylation reactions. A related procedure was simultaneously developed by Bonrath et al. [39]. The authors utilized Bi(OTf)3 in the synthesis of (all-rac)-a-tocopherol (Vitamin E) [39], Besides rare earth metal triflates, such as Ga(OTf)3, Hf(OTf)3, Sc(OTf)3 and Gd(OTf)3, Bi(OTf)3 was shown to be the most efficient catalyst for the Friedel-Crafts-type reaction between trimethylhydroquinone acetate 10b and isophytols 11a, b. With only 0.02 mol% Bi(OTf)3 (substrate to catalyst ratio 5,000 1) the desired a-tocopherols 12a and 12b were isolated in excellent yields (Scheme 10). [Pg.123]

Beside the Friedel-Crafts-type alkylation of arenes, the direct functionalization of 2,4-pentanediones is of great interest in Lewis acid catalysis. Although Pd-catalyzed Tsuji-Trost type allylations of 1,3-diketones are known, direct benzylation procedures catalyzed by Lewis acids are less explored [40-43]. Based on the previously described Friedel-Crafts alkylation of arenes and heteroarenes, the Rueping group developed a Bi(OTf)3-catalyzed benzylation of 2,4-pentanediones. Alcohols such as benzyl, allyl or cinnamyl alcohols were used as the electrophilic component to yield important 2-alkylated 1,3-dicarbonyl compounds. Initially, different Bi(III) salts were screened. In contrast... [Pg.123]

Besides the high efficiency of this route, many styrenes are readily available. This widens the product scope for 1,1-diarylalkanes and would additionally complement the previously described benzyl-alcohol-based Friedel-Crafts-type alkylations. [Pg.134]

Ethynylcarbazole was apparently formed by sodamide treatment of 9-dichlorovinylcarbazole (97) and zinc reduction of 97 gave 98. Where no reaction occurred with the Z isomer, 99 gave the dimer 100 with boron trifluoride the process presumably involves Lewis acid-catalyzed alkylation of one double bond by another double bond, complexed to boron trifluoride, followed by intramolecular Friedel-Crafts type alkylation at the carbazole 1-position. ... [Pg.118]

A series of calpain I inhibitors such as 184 were prepared in a similar fashion from a-chloronitrile 185 in four steps (Scheme 24) <2001JME3488>. The key steps of this synthesis are the aforementioned Friedel-Crafts-type reaction of chloronittile 185 with CISO3H and a one-pot amidation/N-alkylation of dichloride 186 which furnishes the benzosulfonamide core 188 of these inhibitors via intermediate 187. [Pg.542]

Reactions other than those of the nucleophilic reactivity of alkyl sulfates involve reactions with hydrocarbons, thermal degradation, sulfonation, halogenation of the alkyl groups, and reduction of the sulfate groups. Aromatic hydrocarbons, eg, benzene and naphthalene, react with alkyl sulfates when catalyzed by aluminum chloride to give Friedel-Crafts-type alkylation product mixtures (59). Isobutane is readily alkylated by a dipropyl sulfate mixture from the reaction of propylene in propane with sulfuric acid (60). [Pg.199]


See other pages where Alkylations Friedel-Crafts-type is mentioned: [Pg.551]    [Pg.48]    [Pg.480]    [Pg.227]    [Pg.211]    [Pg.158]    [Pg.410]    [Pg.204]    [Pg.261]    [Pg.73]    [Pg.296]    [Pg.1276]    [Pg.1559]    [Pg.24]    [Pg.117]    [Pg.585]    [Pg.591]    [Pg.216]   


SEARCH



Friedel Crafts alkylation

Friedel-Crafts alkylations

Friedel-Crafts-type alkylation

© 2024 chempedia.info