Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic attack complexes

Pd(II) compounds coordinate to alkenes to form rr-complexes. Roughly, a decrease in the electron density of alkenes by coordination to electrophilic Pd(II) permits attack by various nucleophiles on the coordinated alkenes. In contrast, electrophilic attack is commonly observed with uncomplexed alkenes. The attack of nucleophiles with concomitant formation of a carbon-palladium r-bond 1 is called the palladation of alkenes. This reaction is similar to the mercuration reaction. However, unlike the mercuration products, which are stable and isolable, the product 1 of the palladation is usually unstable and undergoes rapid decomposition. The palladation reaction is followed by two reactions. The elimination of H—Pd—Cl from 1 to form vinyl compounds 2 is one reaction path, resulting in nucleophilic substitution of the olefinic proton. When the displacement of the Pd in 1 with another nucleophile takes place, the nucleophilic addition of alkenes occurs to give 3. Depending on the reactants and conditions, either nucleophilic substitution of alkenes or nucleophilic addition to alkenes takes place. [Pg.21]

Ozonation ofAlkenes. The most common ozone reaction involves the cleavage of olefinic carbon—carbon double bonds. Electrophilic attack by ozone on carbon—carbon double bonds is concerted and stereospecific (54). The modified three-step Criegee mechanism involves a 1,3-dipolar cycloaddition of ozone to an olefinic double bond via a transitory TT-complex (3) to form an initial unstable ozonide, a 1,2,3-trioxolane or molozonide (4), where R is hydrogen or alkyl. The molozonide rearranges via a 1,3-cycloreversion to a carbonyl fragment (5) and a peroxidic dipolar ion or zwitterion (6). [Pg.493]

The first step in the catalytic alkylation of aromatics is the conversion of an olefin or olefin-producing reagent into a carbonium ion or polari2ed complex. Then, this carbonium ion or complex, which is a powerful electrophile, attacks the aromatic ring (32). [Pg.48]

Complexation with metals has been observed with a variety of pyridopyridazinones, whilst electrophilic attack at nitrogen is involved in cyclizations to a variety of azolo and azino fused tricyclic systems, e.g. (65CPB586, 7UOC3812). [Pg.238]

Certain metal cations are capable of electrophilic attack on alkenes. Addition is completed when a nucleophile adds to the alkene-cation complex. The nucleophile may be the solvent or a ligand from the metal ion s coordination sphere. [Pg.369]

All these kinetic results can be accommodated by a general mechanism that incorporates the following fundamental components (1) complexation of the alkylating agent and the Lewis acid (2) electrophilic attack on the aromatic substrate to form the a-complex and (3) deprotonation. In many systems, there m be an ionization of the complex to yield a discrete carbocation. This step accounts for the fact that rearrangement of the alkyl group is frequently observed during Friedel-Crafts alkylation. [Pg.581]

The general mechanism for electrophilic substitution suggests that groups other than hydrogen could be displaced, provided the electrophile attacked at the substituted carbon. Substitution at a site already having a substituent is called ipso substitution and has been observed in a number of circumstances. The ease of removal of a substituent depends on its ability to accommodate a positive charge. This fector determines whether the newly attached electrophile or the substituent is eliminated from the [Pg.588]

Many of the reactions of BF3 are of the Friedel-Crafts type though they are perhaps not strictly catalytic since BF3 is required in essentially equimolar quantities with the reactant. The mechanism is not always fully understood but it is generally agreed that in most cases ionic intermediates are produced by or promoted by the formation of a BX3 complex electrophilic attack of the substrate by the cation so produced completes the process. For example, in the Friedel-Crafts-type alkylation of aromatic hydrocarbons ... [Pg.199]

Cl—Al Cly) intermediate or a carbocation C AICI4 This intermediate electrophilically attacks the benzene ring to generate a benzenonium ion intermediate which gives alkylated benzene through deprotonation by aluminum tetrachloride anion. Finally the hydrogen aluminum tetrachloride complex affords aluminum chloride and hydrogen chloride gas. This aluminum chloride is recycled in the catalytic cycle of alkylation. [Pg.176]

The successful deoxygenation of the sulfoxide 18a by either hexachlorodisilane as the reducing agent, or diiron nonacarbonyl according to the deoxygenation-complexation route can also be rationalized in terms of electrophilic attack of the reagents used on the nucleophilic sulfoxy oxygen. [Pg.409]

This reaction has been studied computationally with Zn2+ as the metal cation.32 The calculations indicate that a stepwise reaction occurs, beginning with electrophilic attack of the complexed dienophile on the diene. [Pg.485]

Mononuclear acyl Co carbonyl complexes ROC(0)Co(CO)4 result from reaction of Co2(CO)8 with RO-.77 These also form via the carbonylation of the alkyl precursor. The ROC(0)Co(CO)4 species undergo a range of reactions, including CO ligand substitution (by phosphines, for example), decarbonylation to the alkyl species, isomerization, and reactions of the coordinated acyl group involving either nucleophilic attack at the C or electrophilic attack at the O atom. [Pg.7]

Complex 169 is very susceptible to electrophilic attack, as shown in Scheme 32. The protonation of 169 with PyHCl gave back 166. In this reaction, the assistance of one of the oxygens as the primary site of the protonation cannot be excluded. The alkylation with MeOTf, unlike in the case of 161 (see Scheme 29),22 occurs at the alkylidene carbon as well, forming the 2,3-dimethyl-2-butene-W derivative 167, which was obtained also by the direct synthesis given in Scheme 31. [Pg.215]

There is, however, no very satisfactory explanation of why such m-attack as does take place on QH5Y should also be faster than attack on QHg or of why attack on the o-position in C6H5Y is commonly faster than attack on the p-position. The relatively small spread of the partial rate factors for a particular QH5Y means that homolytic aromatic substitution normally leads to a more complex mixture of products than does electrophilic attack on the same species. [Pg.333]

Experimental evidence shows that both the metal and Ca can be the sites of electrophilic attack. Electrophiles would be expected to add to Ca when this atom is most negatively charged and when the 77-bonding orbital is most heavily concentrated there. These criteria are met in complexes where the metal center is electron-rich and where the carbene substituents are not good 77-donors, e.g.,... [Pg.127]

The interaction between catalyst and diazo compound may be initialized by electrophilic attack of the catalyst metal at the diazo carbon, with simultaneous or subsequent loss of N2, whereupon a metal-carbene complex (415) or the product of carbene insertion into a metal/ligand bond (416) or its ionic equivalent (417) are formed. This is outlined in a simplified manner in Scheme 43, which does not speculate on the kinetics of such a sequence, nor on the possible interconversion of 415 and 416/417 or the primarily formed Lewis acid — Lewis base adducts. [Pg.237]

A number of mechanistic pathways have been identified for the oxidation, such as O-atom transfer to sulfides, electrophilic attack on phenols, hydride transfer from alcohols, and proton-coupled electron transfer from hydroquinone. Some kinetic studies indicate that the rate-determining step involves preassociation of the substrate with the catalyst.507,508 The electrocatalytic properties of polypyridyl oxo-ruthenium complexes have been also applied with success to DNA cleavage509,5 and sugar oxidation.511... [Pg.499]

Electrophilic attack on cyclopropenones takes place at carbonyl oxygen, as indicated by the formation of hydroxy cyclopropenium cations on protonation (see p. 28). Hydrogen-bonded complexation between the carbonyl oxygen of diphenyl cyclopropenone and the O-H hydrogen in water212 and substituted acetic acids213 is reported to give rise to well-defined 1 1-adducts (296). [Pg.70]


See other pages where Electrophilic attack complexes is mentioned: [Pg.179]    [Pg.179]    [Pg.185]    [Pg.257]    [Pg.3]    [Pg.3]    [Pg.25]    [Pg.148]    [Pg.154]    [Pg.157]    [Pg.665]    [Pg.165]    [Pg.287]    [Pg.199]    [Pg.409]    [Pg.177]    [Pg.351]    [Pg.707]    [Pg.38]    [Pg.780]    [Pg.10]    [Pg.21]    [Pg.23]    [Pg.34]    [Pg.168]    [Pg.242]    [Pg.127]    [Pg.230]    [Pg.122]    [Pg.127]    [Pg.554]    [Pg.464]    [Pg.300]   
See also in sourсe #XX -- [ Pg.475 ]




SEARCH



© 2024 chempedia.info