Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic amino acids shikimate pathway

The shikimate pathway is the major route in the biosynthesis of ubiquinone, menaquinone, phyloquinone, plastoquinone, and various colored naphthoquinones. The early steps of this process are common with the steps involved in the biosynthesis of phenols, flavonoids, and aromatic amino acids. Shikimic acid is formed in several steps from precursors of carbohydrate metabolism. The key intermediate in quinone biosynthesis via the shikimate pathway is the chorismate. In the case of ubiquinones, the chorismate is converted to para-hydoxybenzoate and then, depending on the organism, the process continues with prenylation, decarboxylation, three hydroxy-lations, and three methylation steps. - ... [Pg.102]

The shikimate pathway links the metabolism of carbohydrates to the biosynthesis of aromatic natural products via aromatic amino acids. This pathway, which is found only in plants and microorganisms, provides a major route to aromatic and phenolic natural products in plants. To date, over 8,000 phenolic natural products are known, which accounts for about 40% of organic carbon circulating in the biosphere. Although the bulk of plant phenolics are components of cell wall stmctures, many phenolic natural products are known to play functional roles that are essential for the survival of plants. [Pg.486]

Extensive studies support the hypothesis that these phenazine precursors are derived from the shikimic acid pathway, as outlined in Scheme 1, with chorismic acid (51) as the most probable branch point intermediate. Shikimic acid (50) is converted to chorismic acid (51) in known transformations that are part of the common aromatic amino acid biosynthetic pathway. The transformation from chorismic acid (51) to the phenazine precursors has been discussed and investigated through intensive biochemical studies so far, no intermediates have been identified and little is known about the genetic origin and details of the phenazine biosynthesis. ... [Pg.8]

Bacteria, fungi, and plants share a common pathway for the biosynthesis of aromatic amino acids with shikimic acid as a common intermediate and therefore named after it—the shikimate pathway. Availability of shikimic acid has proven to provide growth requirements to tryptophan, tyrosine, and phenylalanine triple auxotrophic bacterial strains. Chorismate is also the last common precursor in the aromatic amino acid biosynthetic pathway, but the pathway is not named after it, as it failed to provide growth requirements to the triple auxotrophs. The aromatic biosynthetic pathway starts with two molecules of phosphoenol pyruvate and one molecule of erythrose 4-phosphate and reach the common precursor, chorismate through shikimate. From chorismate, the pathway branches to form phenylalanine and tyrosine in one and tryptophan in another. Tryptophan biosynthesis proceeds from chorismate in five steps in all organisms. Phenylalanine and tyrosine can be produced by either or both of the two biosynthetic routes. So phenylalanine can be synthesized from arogenate or phenylpyruvate whereas tyrosine can be synthesized from arogenate or 4-hydroxy phenylpyruvate. [Pg.465]

The earliest references to cinnamic acid, cinnamaldehyde, and cinnamyl alcohol are associated with thek isolation and identification as odor-producing constituents in a variety of botanical extracts. It is now generally accepted that the aromatic amino acid L-phenylalanine [63-91-2] a primary end product of the Shikimic Acid Pathway, is the precursor for the biosynthesis of these phenylpropanoids in higher plants (1,2). [Pg.173]

The effects of glyphosate on phenolic compound production are two-fold 1) accumulation of phenolic compounds that are derivatives of aromatic amino acids is reduced and 2) pools of phenolic compounds derived from constituents of the shikimate pathway prior to 5-enolpyruvylshikimate-3-phosphate become larger. Assays that do not distinguish between effects on these two groups, such as that for hydroxyphenolics of Singleton and Rossi (18), can lead to equivocal and difficult to interpret results (e.g. 3-5). [Pg.115]

The Shikimate pathway is responsible for biosynthesis of aromatic amino acids in bacteria, fungi and plants [28], and the absence of this pathway in mammals makes it an interesting target for designing novel antibiotics, fungicides and herbicides. After the production of chorismate the pathway branches and, via specific internal pathways, the chorismate intermediate is converted to the three aromatic amino acids, in addition to a number of other aromatic compounds [29], The enzyme chorismate mutase (CM) is a key enzyme responsible for the Claisen rearrangement of chorismate to prephenate (Scheme 1-1), the first step in the branch that ultimately leads to production of tyrosine and phenylalanine. [Pg.4]

Precursors of phenylpropanoids are synthesized from two basic pathways the shikimic acid pathway and the malonic pathway (see Fig. 3.1). The shikimic acid pathway produces most plant phenolics, whereas the malonic pathway, which is an important source of phenolics in fungi and bacteria, is less significant in higher plants. The shikimate pathway converts simple carbohydrate precursors into the amino acids phenylalanine and tyrosine. The synthesis of an intermediate in this pathway, shikimic acid, is blocked by the broad-spectrum herbicide glyphosate (i.e., Roundup). Because animals do not possess this synthetic pathway, they have no way to synthesize the three aromatic amino acids (i.e., phenylalanine, tyrosine, and tryptophan), which are therefore essential nutrients in animal diets. [Pg.92]

Ring B and the central three-carbon bridge forming the C ring (see Fig. 5.1) originate from the amino acid phenylalanine, itself a product of the shikimate pathway, a plastid-based process which generates aromatic amino acids from simple carbohydrate building blocks. Phenylalanine, and to a lesser extent tyrosine, are then fed into flavonoid biosynthesis via phenylpropanoid (C6-C3) metabolism (see Fig. 5.1). [Pg.143]

Schultz and coworkers (Jackson et a ., 1988) have generated an antibody which exhibits behaviour similar to the enzyme chorismate mutase. The enzyme catalyses the conversion of chorismate [49] to prephenate [50] as part of the shikimate pathway for the biosynthesis of aromatic amino acids in plants and micro-organisms (Haslam, 1974 Dixon and Webb, 1979). It is unusual for an enzyme in that it does not seem to employ acid-base chemistry, nucleophilic or electrophilic catalysis, metal ions, or redox chemistry. Rather, it binds the substrate and forces it into the appropriate conformation for reaction and stabilizes the transition state, without using distinct catalytic groups. [Pg.57]

Deoxy-araWno-heptulosonic acid 7-phosphate (10) is a metabolic intermediate before shikimic acid in the biosynthetic pathway to aromatic amino-acids in bacteria and plants. While (10) is formed enzymically from erythrose 4-phosphate (11) and phosphoenol pyruvate, a one-step chemical synthesis from (11) and oxalacetate has now been published.36 The synthesis takes place at room temperature and neutral pH... [Pg.137]

Phenylalanine Ammonia-Lyase. The building units of lignin are formed from carbohydrate via the shikimic acid pathway to give aromatic amino acids. Once the aromatic amino acids are formed, a key enzyme for the control of lignin precursor synthesis is phenylalanine ammonia-lyase (PAL) (1). This enzyme catalyzes the production of cinnamic acid from phenylalanine. It is very active in those tissues of the plant that become lignified and it is also a central enzyme for the production of other phenylpropanoid-derived compounds such as flavonoids and coumarins, which can occur in many parts of the plant and in many different organs (35). Radioactive phenylalanine and cinnamic acid are directly incorporated into lignin in vascular tissue (36). [Pg.10]

Aromatic Amino Acid Biosynthesis. The shikimate pathway is the biosynthetic route to the aromatic amino acids tryptophan, tyrosine and phenylalanine as well as a large number of secondary metabolites such as flavonoids, anthocyanins, auxins and alkaloids. One enzyme in this pathway is 5-enolpyruvyl shikimate-3-phosphate synthase (EPSP synthase) (Figure 2.9). [Pg.28]

Aromatic compounds arise in several ways. The major mute utilized by autotrophic organisms for synthesis of the aromatic amino acids, quinones, and tocopherols is the shikimate pathway. As outlined here, it starts with the glycolysis intermediate phosphoenolpyruvate (PEP) and erythrose 4-phosphate, a metabolite from the pentose phosphate pathway. Phenylalanine, tyrosine, and tryptophan are not only used for protein synthesis but are converted into a broad range of hormones, chromophores, alkaloids, and structural materials. In plants phenylalanine is deaminated to cinnamate which yields hundreds of secondary products. In another pathway ribose 5-phosphate is converted to pyrimidine and purine nucleotides and also to flavins, folates, molybdopterin, and many other pterin derivatives. [Pg.1420]

The shikimate pathway was identified through the study of ultraviolet light-induced mutants of E. coli, Aerobacter aerogenes, and Neurospora. In 1950, using the penicillin enrichment technique (Chapter 26), Davis obtained a series of mutants of E. coli that would not grow without the addition of aromatic substances.4 5 A number of the mutants required five compounds tyrosine, phenylalanine, tryptophan, p-aminobenzoic acid, and a trace of p-hydroxybenzoic acid. It was a surprise to find that the requirements for all five compounds could be met by the addition of shikimic acid, an aliphatic compound that was then regarded as a rare plant acid. Thus, shikimate was implicated as an intermediate in the biosynthesis of the three aromatic amino acids and of other essential aromatic substances.6 7... [Pg.1421]

The shikimate/arogenate pathway leads to the formation of three aromatic amino acids L-phenylalanine, L-tyrosine, and L-tryptophane. This amino acids are precursors of certain homones (auxins) and of several secondary compounds, including phenolics [6,7]. One shikimate/arogenate is thought to be located in chloroplasts in which the aromatic amino acids are produced mainly for protein biosynthesis, whereas the second is probably membrane associated in the cytosol, in which L-phenylalanine is also produced for the formation of the phenylpropanoids [7]. Once L-phenylalanine has been synthesized, the pathway called phenylalanine/hydroxycinnamate begins, this being defined as "general phenylpropanoid metabolism" [7]. [Pg.652]

The shikimate pathway results in the biosynthesis of chorismate, which can subsequently serve as a recursor for the biosynthesis of the aromatic amino acids tryptophan, phenylalanine and tyrosine. The biochemistry of... [Pg.81]

In addition to acetyl-CoA, shikimic acid, mevalonic acid, and deoxyxylulose phosphate, other building blocks based on amino acids are frequently employed in natural product synthesis. Peptides, proteins, alkaloids, and many antibiotics are derived from amino acids, and the origins of the most important amino acid components of these are briefly indicated in Figure 2.1. Intermediates from the glycolytic pathway and the Krebs cycle are used in constructing many of them, but the aromatic amino acids phenylalanine, tyrosine,... [Pg.9]

THE SHIKIMATE PATHWAY AROMATIC AMINO ACIDS AND PHENYLPROPANOIDS... [Pg.121]

Deoxy-D-araZhrao-hept-2-ulosonic acid-7-phosphate ( DAHP, 122) is the precursor for the synthesis of aromatic amino acids in all microorganisms and plants (shikimic pathway).306,307... [Pg.239]


See other pages where Aromatic amino acids shikimate pathway is mentioned: [Pg.529]    [Pg.274]    [Pg.441]    [Pg.252]    [Pg.45]    [Pg.407]    [Pg.203]    [Pg.113]    [Pg.117]    [Pg.135]    [Pg.284]    [Pg.191]    [Pg.89]    [Pg.91]    [Pg.96]    [Pg.99]    [Pg.65]    [Pg.70]    [Pg.471]    [Pg.252]    [Pg.1421]    [Pg.29]    [Pg.123]    [Pg.82]    [Pg.121]    [Pg.121]    [Pg.121]    [Pg.1195]    [Pg.44]   
See also in sourсe #XX -- [ Pg.333 , Pg.334 ]




SEARCH



Amino acids shikimic acid pathway

Amino aromatic

Amino-acids pathways 141

Aromatic amino acids

Shikimate

Shikimate pathway Shikimic acid

Shikimic

Shikimic acid pathway

Shikimic pathway

© 2024 chempedia.info