Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acids aromatic, biosynthetic pathway

Bacteria, fungi, and plants share a common pathway for the biosynthesis of aromatic amino acids with shikimic acid as a common intermediate and therefore named after it—the shikimate pathway. Availability of shikimic acid has proven to provide growth requirements to tryptophan, tyrosine, and phenylalanine triple auxotrophic bacterial strains. Chorismate is also the last common precursor in the aromatic amino acid biosynthetic pathway, but the pathway is not named after it, as it failed to provide growth requirements to the triple auxotrophs. The aromatic biosynthetic pathway starts with two molecules of phosphoenol pyruvate and one molecule of erythrose 4-phosphate and reach the common precursor, chorismate through shikimate. From chorismate, the pathway branches to form phenylalanine and tyrosine in one and tryptophan in another. Tryptophan biosynthesis proceeds from chorismate in five steps in all organisms. Phenylalanine and tyrosine can be produced by either or both of the two biosynthetic routes. So phenylalanine can be synthesized from arogenate or phenylpyruvate whereas tyrosine can be synthesized from arogenate or 4-hydroxy phenylpyruvate. [Pg.465]

The activity of PK and NRPSs is often precluded and/or followed by actions upon the natural products by modifying enzymes. There exists a first level of diversity in which the monomers for respective synthases must be created. For instance, in the case of many NRPs, noncanonical amino acids must be biosynthesized by a series of enzymes found within the biosynthetic gene cluster in order for the peptides to be available for elongation by the NRPS. A second level of molecular diversity comes into play via post-synthase modification. Examples of these activities include macrocyclization, heterocyclization, aromatization, methylation, oxidation, reduction, halogenation, and glycosylation. Finally, a third level of diversity can occur in which molecules from disparate secondary metabolic pathways may interact, such as the modification of a natural product by an isoprenoid oligomer. Here, we will cover only a small subsection of... [Pg.299]

Deoxy-araWno-heptulosonic acid 7-phosphate (10) is a metabolic intermediate before shikimic acid in the biosynthetic pathway to aromatic amino-acids in bacteria and plants. While (10) is formed enzymically from erythrose 4-phosphate (11) and phosphoenol pyruvate, a one-step chemical synthesis from (11) and oxalacetate has now been published.36 The synthesis takes place at room temperature and neutral pH... [Pg.137]

Nature utilizes the shikimate pathway for the biosynthesis of amino acids with aryl side chains. These nonprotein amino acids are often synthesized through intermediates found in the shikimate pathway. In many cases, L-a-amino acids are functionalized at different sites to yield nonprotein amino acids. These modifications include oxidation, hydroxylation, halogenation, methylation, and thiolation. In addition to these modifications, nature also utilizes modified biosynthetic pathways to produce compounds that are structurally more complex. When analyzing the structures of these nonprotein amino acids, one can generally identify the structural similarities to one of the L-a-amino acids with aromatic side chains. [Pg.19]

The oxidation state of thiazolines and oxazolines can be adjusted by additional tailoring enzymes. For instance, oxidation domains (Ox) composed of approximately 250 amino acids utilize the cofactor FMN (flavin mononucleotide) to form aromatic oxazoles and thiazoles from oxazolines and thiazolines, respectively. Such domains are likely utilized in the biosynthesis of the disorazoles, " diazonimides, bleomycin, and epothiolone. The typical domain organization for a synthetase containing an oxidation domain is Cy-A-PCP-Ox however, in myxothiazol biosynthesis one oxidation domain is incorporated into an A domain. Alternatively, NRPSs can utilize NAD(P)H reductase domains to convert thiazolines and oxazolines into thiazolidines and oxazolidines, respectively. For instance, PchC is a reductase domain from the pyochelin biosynthetic pathway that acts in trans to reduce a thiazolyinyl-Y-PCP-bound intermediate to the corresponding thiazolidynyl-Y-PCP. ... [Pg.637]

Another strategy of some interest is to deplete biogenic amines such as OA by inhibiting their biosynthesis. Inhibitors of such enzymes in the biosynthetic pathway as aromatic amino acid decarboxylase which converts tyrosine to tyramine, or dopamine 3 -hydroxylase which converts tyramine to OA are known and have interesting effects in insects (e.g. see 52,53)t but a discussion of this area lies outside the scope of this paper. Nevertheless, it is a particularly interesting one since these or related enzymes are also needed to produce catecholamines for cuticular sclerotiza-tion, thus offering dual routes to the discovery of compounds with selectively deleterious actions on insects. [Pg.114]

Aromatic Amino Acid Biosynthesis. The shikimate pathway is the biosynthetic route to the aromatic amino acids tryptophan, tyrosine and phenylalanine as well as a large number of secondary metabolites such as flavonoids, anthocyanins, auxins and alkaloids. One enzyme in this pathway is 5-enolpyruvyl shikimate-3-phosphate synthase (EPSP synthase) (Figure 2.9). [Pg.28]

Figure 2.9 Part of the biosynthetic pathway of aromatic amino acid synthesis... Figure 2.9 Part of the biosynthetic pathway of aromatic amino acid synthesis...
All amino acids are derived from intermediates in glycolysis, the citric acid cycle, or the pentose phosphate pathway (Fig. 22-9). Nitrogen enters these pathways by way of glutamate and glutamine. Some pathways are simple, others are not. Ten of the amino acids are just one or several steps removed from the common metabolite from which they are derived. The biosynthetic pathways for others, such as the aromatic amino acids, are more complex. [Pg.841]

Anthranilic acid (Figure 4.4) is an intermediate in the biosynthetic pathway to the indole-containing aromatic amino acid L-tryptophan (Figure 4.10). [Pg.126]

The shikimate biosynthetic pathway occurs in bacteria, plants, and fungi (including yeasts) and is a major entry into the biosynthesis of primary and secondary metabolites, for example aromatic amino acids, menaquinones, vitamins, and antibiotics [1], Starting from erythrose-4-phosphate (E4P) and phosphoenol-pyruvate... [Pg.511]

Some catabolic reactions of amino acid carbon chains are easy transformations to and from TCA cycle intermediates—for example, the transamination of alanine to pyruvate. Reactions involving 1-carbon units, branched-chain, and aromatic amino acids are more complicated. This chapter starts with 1-carbon metabolism and then considers the catabolic and biosynthetic reactions of a few of the longer side chains. Amino acid metabolic pathways can present a bewildering amount of material to memorize. Perhaps fortunately, most of the more complicated pathways lie beyond the scope of an introductory course or a review such as this. Instead of a detailed listing of pathways, this chapter concentrates on general principles of amino acid metabolism, especially those that occur in more than one pathway. [Pg.77]

The biosynthetic pathway from SA into L-Phe [69, 70] is shown in Fig. 8.15. The synthesis of chorismate (CHA), the common intermediate in the biosynthesis of the aromatic amino acids, requires an extra equivalent of PEP, which limits the yield of L-Phe from glucose to 0.30 mol mol-1 if PEP is not conserved [91]. The further transformation of CHA into phenylpyruvic acid (PPY) suffers from inhibition by L-Phe and is also subject to transcriptional control [69, 92]. The final step is a reductive amination of PPY into L-Phe with consumption of l-G1u. [Pg.350]

Some of the most interesting applications of organic structural theory to the elucidation of biosynthetic pathways were stimulated by efforts to formulate mechanisms for the biosynthesis of alkaloids. Conversely, consideration of implied biogenetic relations have occasionally helped structural determination. An important aspect of theories concerning alkaloid biosynthesis has been the assumed role of the aromatic amino acids in their formation. Only limited experimental evidence is available in this area. The incorporation of tyrosine- 8-C into morphine has been shown to be in accordance with a theory for its formation from 3,4-dihydroxyphenyl-alanine plus 3,4-dihydroxyphenylacetaldehyde. A stimulating theory of the biosynthesis of indole alkaloids, based on a condensation between trypt-amine and a rearrangement product of prephenic acid, has recently been published. The unique stereochemistry of C15 of these alkaloids had an important part in the formulation of the theory. Experimental proof of this theory would be valuable for several areas of alkaloid chemistry and biosynthesis. [Pg.269]

Example DHAP synthetase (of aromatic amino acid biosynthetic pathway)... [Pg.268]

NAD tends to be an electron acceptor in catabolic reactions involving the degradation of carbohydrates, fatty acids, ketone bodies, amino acids, and alcohol. NAD is used in energy-producing reactions. NADP, which is cytosolic, tends to be involved in biosynthetic reactions. Reduced NADP is generated by the pentose phosphate pathway (cytosolic) and used by cytosolic pathways, such as fatty acid biosynthesis and cholesterol synthesis, and by ribonucleotide reductase. The niacin coenzymes are used for two-electron transfer reactions. The oxidized form of NAD is NAD". There is a positive charge on the cofactor because the aromatic amino group is a quaternary amine. A quaternary amine participates in four... [Pg.594]


See other pages where Amino acids aromatic, biosynthetic pathway is mentioned: [Pg.1612]    [Pg.662]    [Pg.177]    [Pg.113]    [Pg.245]    [Pg.11]    [Pg.284]    [Pg.646]    [Pg.646]    [Pg.141]    [Pg.89]    [Pg.91]    [Pg.154]    [Pg.471]    [Pg.1421]    [Pg.29]    [Pg.510]    [Pg.511]    [Pg.125]    [Pg.4]    [Pg.574]    [Pg.37]    [Pg.102]    [Pg.25]    [Pg.90]    [Pg.184]    [Pg.302]    [Pg.1395]    [Pg.573]    [Pg.265]    [Pg.152]    [Pg.678]   
See also in sourсe #XX -- [ Pg.272 ]




SEARCH



Amino aromatic

Amino-acids pathways 141

Aromatic amino acids

Biosynthetic pathways

© 2024 chempedia.info