Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous adsorbate

Methods of Speciation and Fractionation. It is apparent that in order to understand the mobility of arsenic and its availability for reactions, methods of speciation and fractionation must be applied to sediment samples in field and laboratory studies. In this paper speciation refers to the separation and quantitative determination of inorganic arsenic, methanearsonic acid, and cacodylic acid. Compartmentalization involves identifying the major compartments for arsenic in a heterogeneous system (e.g. aqueous, adsorbed, occluded,...) and determining the amounts of arsenic in each compartment. Fractionation involves the extraction of arsenic from operationally defined fractions of the solid phase of an aquatic system (e.g. sediment). [Pg.713]

The driving force behind this reaction is the difference between the Fermi level Ep in diamond and the chemical potential ge of electrons in the aqueous adsorbate layer. As long as ge < Bp. electrons exit from the diamond surface in the course of reaction (Eq. 6.1) taking place. Once ge = Bp, equilibrium is achieved. Thus a space charge is generated in the uppermost layer of the diamond film, which leads to the so-called surface band bending (Figure 6.31). [Pg.421]

This discussion of the solid phase on which the water is adsorbed has brought us to a conclusion which is important for our subsequent exeunination of the aqueous adsorbed phase. The water which is not (irreversibly) decomposed is adsorbed on an oxyhydroxide whose exact nature has only a minor effect on the adsorption phenomena. There is substantial literature on the properties of adsorbents on this type of surface, A review of this literature allows us to propose the following generalizations concerning the aqueous phase in atmospheric corrosion. [Pg.255]

The Aqueous Adsorbate. The aqueous phase acts as (i) solvent/ (ii) dielectric and (iii) transport vehicle and will be discussed under these three topics. [Pg.255]

Here G[A (aq)] is the free energy of the aqueous adsorbate-substrate complex, G[A"(aq)] is the free energy of the aqueous anion, and G( ) is the free energy of the substrate. The free energy of the isolated aqueous phase species can be computed via ... [Pg.123]

Air emissions from PTA production mostly come from the reactor vent gas of the TA production stage. There are no VOC emissions associated with the purification of TA. After passing through aqueous adsorbers, the reactor vent gas still contains the VOCs of p-xylene, acetic acid, methyl acetate, toluene, benzene, methyl bromide and CO. With increasingly stringent environmental regulations combined with the expansion of PTA capacity, more and more PTA plants are required to further reduce air emissions from the adsorber vent gas. [Pg.177]

The varying actual orientation of molecules adsorbed at an aqueous solution-CCU interface with decreasing A has been followed by resonance Raman spectroscopy using polarized light [130]. The effect of pressure has been studied for fatty alcohols at the water-hexane [131] and water-paraffin oil [132] interfaces. [Pg.85]

A 1.5% by weight aqueous surfactant solution has a surface tension of 53.8 dyn/cm (or mN/m) at 20°C. (a) Calculate a, the area of surface containing one molecule. State any assumptions that must be made to make the calculation from the preceding data, (b) The additional information is now supplied that a 1.7% solution has a surface tension of 53.6 dyn/cm. If the surface-adsorbed film obeys the equation of state ir(o - 00) = kT, calculate from the combined data a value of 00, the actual area of a molecule. [Pg.93]

Assume that an aqueous solute adsorbs at the mercury-water interface according to the Langmuir equation x/xm = bc/( + be), where Xm is the maximum possible amount and x/x = 0.5 at C = 0.3Af. Neglecting activity coefficient effects, estimate the value of the mercury-solution interfacial tension when C is Q.IM. The limiting molecular area of the solute is 20 A per molecule. The temperature is 25°C. [Pg.157]

IHP) (the Helmholtz condenser formula is used in connection with it), located at the surface of the layer of Stem adsorbed ions, and an outer Helmholtz plane (OHP), located on the plane of centers of the next layer of ions marking the beginning of the diffuse layer. These planes, marked IHP and OHP in Fig. V-3 are merely planes of average electrical property the actual local potentials, if they could be measured, must vary wildly between locations where there is an adsorbed ion and places where only water resides on the surface. For liquid surfaces, discussed in Section V-7C, the interface will not be smooth due to thermal waves (Section IV-3). Sweeney and co-workers applied gradient theory (see Chapter III) to model the electric double layer and interfacial tension of a hydrocarbon-aqueous electrolyte interface [27]. [Pg.179]

An example of the time effects in irreversible adsorption of a surfactant system is shown in Fig. XI-8 for barium dinonylnapthalene sulfonate (an oil additive) adsorbing on Ti02 (anatase). Adsorption was ineversible for aged systems, but much less so for those equilibrating for a short time. The adsorption of aqueous methylene blue (note Section XI-4) on TiOi (anatase) was also irreversible [128]. In these situations it seems necessary to postulate at least a two-stage sequence, such as... [Pg.405]

Although it is hard to draw a sharp distinction, emulsions and foams are somewhat different from systems normally referred to as colloidal. Thus, whereas ordinary cream is an oil-in-water emulsion, the very fine aqueous suspension of oil droplets that results from the condensation of oily steam is essentially colloidal and is called an oil hydrosol. In this case the oil occupies only a small fraction of the volume of the system, and the particles of oil are small enough that their natural sedimentation rate is so slow that even small thermal convection currents suffice to keep them suspended for a cream, on the other hand, as also is the case for foams, the inner phase constitutes a sizable fraction of the total volume, and the system consists of a network of interfaces that are prevented from collapsing or coalescing by virtue of adsorbed films or electrical repulsions. [Pg.500]

Decolorisation by Animal Charcoal. It sometimes hap pens (particularly with aromatic and heterocyclic compounds) that a crude product may contain a coloured impurity, which on recrystallisation dissolves in the boiling solvent, but is then partly occluded by crystals as they form and grow in the cooling solution. Sometimes a very tenacious occlusion may thus occur, and repeated and very wasteful recrystallisation may be necessary to eliminate the impurity. Moreover, the amount of the impurity present may be so small that the melting-point and analytical values of the compound are not sensibly affected, yet the appearance of the sample is ruined. Such impurities can usually be readily removed by boiling the substance in solution with a small quantity of finely powdered animal charcoal for a short time, and then filtering the solution while hot. The animal charcoal adsorbs the coloured impurity, and the filtrate is usually almost free from extraneous colour and deposits therefore pure crystals. This decolorisation by animal charcoal occurs most readily in aqueous solution, but can be performed in almost any organic solvent. Care should be taken not to use an excessive quantity... [Pg.21]

I2 in CCI4. The contents of the separatory funnel are shaken, and the organic and aqueous layers are allowed to separate. The organic layer, containing the excess I2, is transferred to the surface of a piezoelectric crystal on which a thin layer of Au has been deposited. After allowing the I2 to adsorb to the Au, the CCI4 is removed and the crystal s frequency shift is measured. The following data are reported for a series of thiourea standards. [Pg.271]

Polymerization begins in the aqueous phase with the decomposition of the initiator. The free radicals produced initiate polymerization by reacting with the monomers dissolved in the water. The resulting polymer radicals grow very slowly because of the low concentration of monomer, but as they grow they acquire surface active properties and eventually enter micelles. There is a possibility that they become adsorbed at the oil-water interface of the monomer... [Pg.399]

However, the quantity of Pa produced in this manner is much less than the amount (more than 100 g) that has been isolated from the natural source. The methods for the recovery of protactinium include coprecipitation, solvent extraction, ion exchange, and volatility procedures. AH of these, however, are rendered difficult by the extreme tendency of protactinium(V) to form polymeric coUoidal particles composed of ionic species. These caimot be removed from aqueous media by solvent extraction losses may occur by adsorption to containers and protactinium may be adsorbed by any precipitate present. [Pg.213]

Hydrophilic and Hydrophobic Surfaces. Water is a small, highly polar molecular and it is therefore strongly adsorbed on a polar surface as a result of the large contribution from the electrostatic forces. Polar adsorbents such as most zeoHtes, siUca gel, or activated alumina therefore adsorb water more strongly than they adsorb organic species, and, as a result, such adsorbents are commonly called hydrophilic. In contrast, on a nonpolar surface where there is no electrostatic interaction water is held only very weakly and is easily displaced by organics. Such adsorbents, which are the only practical choice for adsorption of organics from aqueous solutions, are termed hydrophobic. [Pg.252]

The most common hydrophobic adsorbents are activated carbon and siUcahte. The latter is of particular interest since the affinity for water is very low indeed the heat of adsorption is even smaller than the latent heat of vaporization (3). It seems clear that the channel stmcture of siUcahte must inhibit the hydrogen bonding between occluded water molecules, thus enhancing the hydrophobic nature of the adsorbent. As a result, siUcahte has some potential as a selective adsorbent for the separation of alcohols and other organics from dilute aqueous solutions (4). [Pg.252]

Adsorbent Life. Long term stability under rugged operating conditions is an important characteristic of an adsorbent. By their nature 2eohtes are not stable in an aqueous environment and must be specially formulated to enhance their stabiUty in order to obtain several years of service. Polymeric resins do not suffer from dissolution problems. However, they are prone to chemical attack (52). [Pg.295]

Advanced composites and fiber-reinforced materials are used in sailcloth, speedboat, and other types of boat components, and leisure and commercial fishing gear. A ram id and polyethylene fibers are currentiy used in conveyer belts to collect valuable offshore minerals such as cobalt, uranium, and manganese. Constmction of oil-adsorbing fences made of high performance fabrics is being evaluated in Japan as well as the constmction of other pollution control textile materials for maritime use. For most marine uses, the textile materials must be resistant to biodeterioration and to a variety of aqueous pollutants and environmental conditions. [Pg.73]

During Stage I the number of polymer particles range from 10 to 10 per mL. As the particles grow they adsorb more emulsifier and eventually reduce the soap concentration below its critical micelle concentration (CMC). Once below the CMC, the micelles disappear and emulsifier is distributed between the growing polymer particles, monomer droplets, and aqueous phase. [Pg.23]

Complex Coacervation. This process occurs ia aqueous media and is used primarily to encapsulate water-iminiscible Hquids or water-iasoluble soHds (7). In the complex coacervation of gelatin with gum arabic (Eig. 2), a water-iasoluble core material is dispersed to a desired drop size ia a warm gelatin solution. After gum arabic and water are added to this emulsion, pH of the aqueous phase is typically adjusted to pH 4.0—4.5. This causes a Hquid complex coacervate of gelatin, gum arabic, and water to form. When the coacervate adsorbs on the surface of the core material, a Hquid complex coacervate film surrounds the dispersed core material thereby forming embryo microcapsules. The system is cooled, often below 10°C, ia order to gel the Hquid coacervate sheU. Glutaraldehyde is added and allowed to chemically cross-link the capsule sheU. After treatment with glutaraldehyde, the capsules are either coated onto a substrate or dried to a free-flow powder. [Pg.318]

If an adsorbed chemical group (anchor) is more strongly bound to the surface than a solvent molecule would be at that site, an equiHbrium expression may be written for the displacement of solvent by adsorbate. Adsorption is particularly strong if the chemical nature of the adsorbed group is similar to that of the particle surface for example, in aqueous systems perfluoroalkane groups adsorb weU on polytetrafluoroethene particles and aromatic polyethene oxides adsorb weU on polystyrene. [Pg.547]

Short-Chain Organics. Adsorption of an organic dispersant can reduce polarizabiHty attraction between particles, ie, provide semisteric stabilization, if A < A.p < A or A < A.p < A (T = dispersant) and the adsorption layer is thick. Adsorption in aqueous systems generally does not foUow the simple Langmuir profile because the organic tails on adsorbed molecules at adjacent sites attract each other strongly. [Pg.547]


See other pages where Aqueous adsorbate is mentioned: [Pg.11]    [Pg.8]    [Pg.238]    [Pg.11]    [Pg.8]    [Pg.238]    [Pg.244]    [Pg.246]    [Pg.394]    [Pg.411]    [Pg.445]    [Pg.2601]    [Pg.325]    [Pg.128]    [Pg.54]    [Pg.191]    [Pg.320]    [Pg.34]    [Pg.427]    [Pg.476]    [Pg.544]    [Pg.544]    [Pg.172]    [Pg.454]    [Pg.15]    [Pg.19]    [Pg.445]    [Pg.473]    [Pg.543]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



© 2024 chempedia.info