Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Approximation filter

Rows 1-8 are the approximation filter coefficients and rows 9-16 represent the detail filter coefficients. At each next row the two coefficients are moved two positions (shift b equal to 2). This procedure is schematically shown in Fig. 40.43 for a signal consisting of 8 data points. Once W has been defined, the a wavelet transform coefficients are found by solving eq. (40.16), which gives ... [Pg.569]

PIST distinguishes itself from other spectral transform Lanczos methods by using two important innovations. First, the linear equation Eq. [38] is solved by QMR but not to a high degree of accuracy. In practice, the QMR recursion is terminated once a prespecified (and relatively large) tolerance is reached. Consequently, the resulting Lanczos vectors are only approximately filtered. This inexact spectral transform is efficient because many less matrix-vector multiplications are needed, and its deficiencies can subsequently... [Pg.302]

In the simplest (and most localized) member of the Daubechies family, the four coefficients [Cq, Cj, C2, C3] represent the low-pass filter H that is applied to the odd rows of the transformation matrix. The even rows perform a different convolution by the coefficients [C3, -C2, Cj, -Cq] that represent the high-pass filter G. H acts as a coarse filter (or approximation filter) emphasizing the slowly changing (low-frequency) features, and G is the detail filter that extracts the rapidly changing (high-frequency) part of the data vector. The combination of the two filters H and G is referred to as a filter bank. [Pg.98]

Since the EKF is based on the first-order Taylor series expansion, the accuracy and stability of the EKF may not be sufficient for many applications with large uncertainties. Many quadrature-based Gaussian approximation filters can be used in the same filtering framework to improve the performance of the EKF. [Pg.468]

Assuming that the probability density function (PDF) of the states is Gaussian, the Gaussian approximation filters can be obtained as follows [29-31]. Note that only the mean and covariance need to be calculated and the filtering algorithm also consists of two steps ... [Pg.469]

An estimate of 0[t based on fixed values of V may be obtained recursively using the Kalman filter (or a proper nonlinear approximation filter in the full TARMA case) based on the following state-space representation of the SP/ GSC-TARMA model (Poulimenos and Fassois 2006) ... [Pg.1838]

A sehematie diagram of a SIFT apparatus is shown in figure Bl.7.12. The instrument eonsists of five basie regions, the ion soiiree, initial quadnipole mass filter, flow tube, seeond mass filter and finally the deteetor. The heart of the instrument is the flow tube, whieh is a steel tube approximately 1 m long and 10 em in diameter. The pressure in the flow tube is kept of the order of 0.5 Torr, resulting in earrier gas flow rates of... [Pg.1344]

Beck M H and Meyer H D 1998 Extracting accurate bound-state spectra from approximate wave packet propagation using the filter-diagonalization method J. Chem. Phys. 109 3730... [Pg.2328]

It remains to be seen, if the approximation using large time steps is reasonable. We shall show later the effect of the approximation on the power spectrum of the trajectory. More specifically, we shall demonstrate that large time steps filter out high frequency motions. [Pg.269]

As discussed above the errors in the trajectory are correlated with the missing rapid motions. In contrast to the friction approach of estimating the variance, which may affect long time phenomena, we identify our errors as the missing ( filtered ) high frequency modes. We therefore attempt to account approximately for the fast motions by choosing the trajectory variance accordingly. [Pg.274]

In general, the first step in virtual screening is the filtering by the application of Lipinski s Rule of Five [20]. Lipinski s work was based on the results of profiling the calculated physical property data in a set of 2245 compounds chosen from the World Drug Index. Polymers, peptides, quaternary ammonium, and phosphates were removed from this data set. Statistical analysis of this data set showed that approximately 90% of the remaining compounds had ... [Pg.607]

General Considerations. With liquids and solutions the most serious losses are due to (a) transference from spherical flasks and difficulties of drainage, (b) retention by filter-papers, (c) absorption by large corks. As containers for small quantities of liquids it is therefore often convenient to use pear-shaped flasks A and conical test-tubes or centrifuge-tubes B (Fig. 29). (In this and subsequent figures, approximate dimensions are given to indicate a convenient size.)... [Pg.59]

The oxime is freely soluble in water and in most organic liquids. Recrystallise the crude dry product from a minimum of 60-80 petrol or (less suitably) cyclohexane for this purpose first determine approximately, by means of a small-scale test-tube experiment, the minimum proportion of the hot solvent required to dissolve the oxime from about 0-5 g. of the crude material. Then place the bulk of the crude product in a small (100 ml.) round-bottomed or conical flask fitted with a reflux water-condenser, add the required amount of the solvent and boil the mixture on a water-bath. Then turn out the gas, and quickly filter the hot mixture through a fluted filter-paper into a conical flask the sodium chloride remains on the filter, whilst the filtrate on cooling in ice-water deposits the acetoxime as colourless crystals. These, when filtered anddried (either by pressing between drying-paper or by placing in an atmospheric desiccator) have m.p. 60 . Acetoxime sublimes rather readily when exposed to the air, and rapidly when warmed or when placed in a vacuum. Hence the necessity for an atmospheric desiccator for drying purposes. [Pg.94]

In practice, it is best to purify a quantity, say one Winchester quart bottle, of technical 0 720 ether to cover the requirements of a group of students. The Winchester quart of ether is divided into two approximately equal volumes, and each is shaken vigorously in a large separatory funnel with 10-20 ml. of the above ferrous solution diluted with 100 ml. of water. The latter is removed, the ether transferred to the Winchester bottle, and 150-200 g. of anhydrous calcium chloride is added. The mixture is allowed to stand for at least 24 hours with occasional shaking. Both the water and the alcohol present are thus largely removed. The ether is then filtered through a large fluted filter paper into another clean dry Winchester bottle (CAUTION all flames in the vicinity must be... [Pg.163]

Place 84 g. of iron filings and 340 ml. of water in a 1 - 5 or 2-litre bolt-head flask equipped with a mechanical stirrer. Heat the mixture to boiling, stir mechanically, and add the sodium m-nitrobenzenesulphonate in small portions during 1 hour. After each addition the mixture foams extensively a wet cloth should be applied to the neck of the flask if the mixture tends to froth over the sides. Replace from time to time the water which has evaporated so that the volume is approximately constant. When all the sodium salt has been introduced, boU the mixture for 20 minutes. Place a small drop of the suspension upon filter paper and observe the colour of the spot it should be a pale brown but not deep brown or deep yellow. If it is not appreciably coloured, add anhydrous sodium carbonate cautiously, stirring the mixture, until red litmus paper is turned blue and a test drop upon filter paper is not blackened by sodium sulphide solution. Filter at the pump and wash well with hot water. Concentrate the filtrate to about 200 ml., acidify with concentrated hydrochloric acid to Congo red, and allow to cool. Filter off the metanilic acid and dry upon filter paper. A further small quantity may be obtained by concentrating the mother liquid. The yield is 55 g. [Pg.589]

Dissolve 5 g. of phenol in 75 ml. of 10 per cent, sodium hydroxide solution contained in a wide-mouthed reagent bottle or conical flask of about 200 ml. capacity. Add 11 g. (9 ml.) of redistilled benzoyl chloride, cork the vessel securely, and shake the mixture vigorously for 15-20 minutes. At the end of this period the reaction is usually practically complete and a sohd product is obtained. Filter oflf the soUd ester with suction, break up any lumps on the filter, wash thoroughly with water and drain well. RecrystaUise the crude ester from rectified (or methylated) spirit use a quantity of hot solvent approximately twice the minimum volume required for complete solution in order to ensure that the ester does not separate until the temperature of the solution has fallen below the melting point of phenyl benzoate. Filter the hot solution, if necessary, through a hot water funnel or through a Buchner funnel preheated by the filtration of some boiling solvent. Colourless crystals of phenyl benzoate, m.p. 69°, are thus obtained. The yield is 8 g. [Pg.784]

After dissolving the sample in a beaker, remove any solid impurities by filtering a portion of the solution containing the analyte. Collect and discard the first several milliliters of solution before collecting a sample of approximately 5 mL for further analysis. [Pg.51]

A sample containing 60 mg of Mg + will generate approximately 600 mg, or 0.6 g, of MgNH4P04 6H2O. This is a substantial amount of precipitate to work with during the filtration step. Large quantities of precipitate may be difficult to filter and difficult to adequately rinse free of impurities. [Pg.246]

Total airborne particulates are determined using a high-volume air sampler equipped with either cellulose fiber or glass fiber filters. Samples taken from urban environments require approximately 1 h of sampling time, but samples from rural environments require substantially longer times. [Pg.264]

Procedure. A vitamin B complex tablet Is crushed and placed In a beaker with 20.00 mL of a 50% v/v methanol solution that Is 20 mM In sodium tetraborate and contains 100.0 ppm of o-ethoxybenzamIde. After mixing for 2 min to ensure that the B vitamins are dissolved, a 5.00-mL portion Is passed through a 0.45- xm filter to remove Insoluble binders. An approximately 4-nL sample Is loaded Into a 50- xm Internal diameter capillary column. For CZE the capillary column contains a 20 mM pH 9 sodium tetraborate/sodlum dIhydrogen phosphate buffer. For MEKC the buffer Is also 150 mM In sodium dodecylsulfate. A 40-kV/m electric field Is used to effect both the CZE and MEKC separations. [Pg.607]

After heating to 50 °C in a water bath, the sample was cooled to below room temperature and filtered. The residue was washed with two 5-mL portions of CCI4, and the combined filtrates were collected in a 25-mL volumetric flask. After adding 2.00 mL of the internal standard solution, the contents of the flask were diluted to volume with CCI4. Analysis of an approximately 2- tL sample gave LfD signals of f3.5 for the terpene hydrate and 24.9 for the camphor. Report the %w/w camphor in the analgesic ointment. [Pg.616]

Reaction times can be as short as 10 minutes in a continuous flow reactor (1). In a typical batch cycle, the slurry is heated to the reaction temperature and held for up to 24 hours, although hold times can be less than an hour for many processes. After reaction is complete, the material is cooled, either by batch cooling or by pumping the product slurry through a double-pipe heat exchanger. Once the temperature is reduced below approximately 100°C, the slurry can be released through a pressure letdown system to ambient pressure. The product is then recovered by filtration (qv). A series of wash steps may be required to remove any salts that are formed as by-products. The clean filter cake is then dried in a tray or tunnel dryer or reslurried with water and spray dried. [Pg.498]


See other pages where Approximation filter is mentioned: [Pg.467]    [Pg.469]    [Pg.113]    [Pg.467]    [Pg.469]    [Pg.113]    [Pg.450]    [Pg.612]    [Pg.2316]    [Pg.537]    [Pg.205]    [Pg.244]    [Pg.288]    [Pg.291]    [Pg.309]    [Pg.287]    [Pg.311]    [Pg.506]    [Pg.616]    [Pg.764]    [Pg.769]    [Pg.159]    [Pg.195]    [Pg.263]    [Pg.456]    [Pg.447]    [Pg.396]    [Pg.396]    [Pg.128]    [Pg.403]    [Pg.513]   


SEARCH



© 2024 chempedia.info