Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Application multilayer

Hews-Taylor K (2002) Artificial photosynthesis, basic research in biomimetic applications multilayer organic photovoltaic cell. CSIRO, Australia... [Pg.229]

Film Applications Multilayer packaging food and medical, cover/base, pouch, and solid films. ... [Pg.47]

Uses and applications multilayer food packaging, boil in bag, automotive fuel components. [Pg.291]

Composite materials are materials that consist of phases of dissimilar materials either in the form of layers or phases dispersed in a matrix. In many applications, multilayer film structures (layered composites) are used. Multilayer films having differing optical properties are used in forming AR coatings, heat mirrors, and band-pass filters on optical components. Multilayer thin films have many applications. The layers may be of different metals or may be a mixture of metals, oxides, and polymers. For example, a multilayer structure of polymer and oxide has been shown to have excellent moisture and oxygen permeation barrier properties. [Pg.385]

Recently commercially available X-ray systems for laminography have a spatial resolution limited to hundred microns, which is not enough for modem multilayer electronic devices and assembles. Modem PCBs, flip-chips, BGA-connections etc. can contain contacts and soldering points of 10 to 20 microns. The classical approach for industrial laminography in electronic applications is shown in Fig.2. [Pg.569]

The self-assembly process can be continued to form multilayer films of up to 25 layers [33,48,49]. The reliability of this process is illustrated in Fig. XI-3, where the thickness grows linearly with the number of reacted layers. These thick layers have many interesting applications. [Pg.397]

Thermal stahility. Yor applications of LB films, temperature stability is an important parameter. Different teclmiques have been employed to study tliis property for mono- and multilayers of arachidate LB films. In general, an increase in temperature is connected witli a confonnational disorder in tire films and above 390 K tire order present in tire films seems to vanish completely [45, 46 and 45] However, a comprehensive picture for order-disorder transitions in mono- and multilayer systems cannot be given. Nevertlieless, some general properties are found in all systems [47]. Gauche confonnations mostly reside at tire ends of tire chains at room temperature, but are also present inside tire... [Pg.2615]

When the film thickens beyond two or three molecular layers, the effect of surface structure is largely smoothed out. It should therefore be possible, as Hill and Halsey have argued, to analyse the isotherm in the multilayer region by reference to surface forces (Chapter 1), the partial molar entropy of the adsorbed film being taken as equal to that of the liquid adsorptive. By application of the 6-12 relation of Chapter 1 (with omission of the r" term as being negligible except at short distances) Hill was able to arrive at the isotherm equation... [Pg.89]

Electronic Applications. The PGMs have a number of important and diverse appHcations in the electronics industry (30). The most widely used are palladium and mthenium. Palladium or palladium—silver thick-film pastes are used in multilayer ceramic capacitors and conductor inks for hybrid integrated circuits (qv). In multilayer ceramic capacitors, the termination electrodes are silver or a silver-rich Pd—Ag alloy. The internal electrodes use a palladium-rich Pd—Ag alloy. Palladium salts are increasingly used to plate edge connectors and lead frames of semiconductors (qv), as a cost-effective alternative to gold. In 1994, 45% of total mthenium demand was for use in mthenium oxide resistor pastes (see Electrical connectors). [Pg.173]

Because of the possibility of voids between layers, it is preferable not to use multilayer vessels in applications where they will be sub-jec ted to fatigue. Inward thermal gradients (inside temperature lower than outside temperature) are also undesirable. [Pg.1028]

Powder Insulation A method of reahzing some of the benefits of multiple floating shields without incurring the difficulties of awkward structural complexities is to use evacuated powder insulation. The penalty incurred in the use of this type of insulation, however, is a tenfold reduction in the overall thermal effectiveness of the insulation system over that obtained for multilayer insulation. In applications where this is not a serious factor, such as LNG storage facihties, and investment cost is of major concern, even unevacuated powder-insulation systems have found useful apphcations. The variation in apparent mean thermal conductivity of several powders as a function of interstitial gas pressure is shown in the familiar S-shaped curves of Fig. 11-121. ... [Pg.1135]

P. Dhez and C. Weisbuch. Physics, Fabrication, and Applications of Multilayered Structures. Plenum, New York, 1988. [Pg.213]

Early work in ellipsometry focused on improving the technique, whereas attention now emphasizes applications to materials analysis. New uses continue to be found however, ellipsometry traditionally has been used to determine film thicknesses (in the rang 1-1000 nm), as well as optical constants. " Common systems are oxide and nitride films on silicon v ers, dielectric films deposited on optical sur ces, and multilayer semiconductor strucmres. [Pg.401]

Three common uses of RBS analysis exist quantitative depth profiling, areal concentration measurements (atoms/cm ), and crystal quality and impurity lattice site analysis. Its primary application is quantitative depth profiling of semiconductor thin films and multilayered structures. It is also used to measure contaminants and to study crystal structures, also primarily in semiconductor materials. Other applications include depth profilii of polymers, high-T superconductors, optical coatings, and catalyst particles. ... [Pg.477]

In numerous applications of polymeric materials multilayers of films are used. This practice is found in microelectronic, aeronautical, and biomedical applications to name a few. Developing good adhesion between these layers requires interdiffusion of the molecules at the interfaces between the layers over size scales comparable to the molecular diameter (tens of nm). In addition, these interfaces are buried within the specimen. Aside from this practical aspect, interdififlision over short distances holds the key for critically evaluating current theories of polymer difllision. Theories of polymer interdiffusion predict specific shapes for the concentration profile of segments across the interface as a function of time. Interdiffiision studies on bilayered specimen comprised of a layer of polystyrene (PS) on a layer of perdeuterated (PS) d-PS, can be used as a model system that will capture the fundamental physics of the problem. Initially, the bilayer will have a sharp interface, which upon annealing will broaden with time. [Pg.667]

Current usage is almost entirely associated with the good adhesion to aluminium. Specific applications include the bonding of aluminium foil to plastics films, as the adhesive layer between aluminium foil and polyethylene in multilayer extrusion-laminated non-lead toothpaste tubes and in coated aluminium foil pouches. Grades have more recently become available for manufacture by blown film processes designed for use in skin packaging applications. Such materials are said to comply with FDA regulations. [Pg.277]

Recent applications of e-beam and HF-plasma SNMS have been published in the following areas aerosol particles [3.77], X-ray mirrors [3.78, 3.79], ceramics and hard coatings [3.80-3.84], glasses [3.85], interface reactions [3.86], ion implantations [3.87], molecular beam epitaxy (MBE) layers [3.88], multilayer systems [3.89], ohmic contacts [3.90], organic additives [3.91], perovskite-type and superconducting layers [3.92], steel [3.93, 3.94], surface deposition [3.95], sub-surface diffusion [3.96], sensors [3.97-3.99], soil [3.100], and thermal barrier coatings [3.101]. [Pg.131]

Initial results prove the high potential of LA-based hyphenated techniques for depth profiling of coatings and multilayer samples. These techniques can be used as complementary methods to other surface-analysis techniques. Probably the most reasonable application of laser ablation for depth profiling would be the range from a few tens of nanometers to a few tens of microns, a range which is difficult to analyze by other techniques, e. g. SIMS, SNMS,TXRE, GD-OES-MS, etc. The lateral and depth resolution of LA can both be improved by use of femtosecond lasers. [Pg.240]

A new chapter in the uses of semiconductors arrived with a theoretical paper by two physicists working at IBM s research laboratory in New York State, L. Esaki (a Japanese immigrant who has since returned to Japan) and R. Tsu (Esaki and Tsu 1970). They predicted that in a fine multilayer structure of two distinct semiconductors (or of a semiconductor and an insulator) tunnelling between quantum wells becomes important and a superlattice with minibands and mini (energy) gaps is formed. Three years later, Esaki and Tsu proved their concept experimentally. Another name used for such a superlattice is confined heterostructure . This concept was to prove so fruitful in the emerging field of optoelectronics (the merging of optics with electronics) that a Nobel Prize followed in due course. The central application of these superlattices eventually turned out to be a tunable laser. [Pg.265]

Laminated beams (glulam), parallam (or LSL) and fingerjoints a flat pressed multilayer wood beam, thiek wood planks constituting the layers, used for structural exterior applications and bonded with PRF (phenol-resorcinol-formaldehyde) cold-setting resins, or MUF cold-setting resins, or even with certain types of polurethanes (although the use of these latter ones is only established in one country and can show creep and temperature-induced creep problems). The indi-... [Pg.1045]

Additional applications of the transfer matrix method to adsorption and desorption kinetics deal with other molecules on low index metal surfaces [40-46], multilayers [47-49], multi-site stepped surfaces [50], and co-adsorbates [51-55]. A similar approach has been used to study electrochemical systems. [Pg.462]


See other pages where Application multilayer is mentioned: [Pg.21]    [Pg.734]    [Pg.380]    [Pg.165]    [Pg.178]    [Pg.581]    [Pg.21]    [Pg.734]    [Pg.380]    [Pg.165]    [Pg.178]    [Pg.581]    [Pg.379]    [Pg.190]    [Pg.356]    [Pg.410]    [Pg.533]    [Pg.738]    [Pg.279]    [Pg.147]    [Pg.214]    [Pg.217]    [Pg.231]    [Pg.238]    [Pg.241]    [Pg.269]    [Pg.270]    [Pg.233]    [Pg.372]    [Pg.410]    [Pg.414]    [Pg.436]    [Pg.96]    [Pg.47]    [Pg.349]    [Pg.133]   


SEARCH



Electrical Conductivity of Inhomogeneous Systems Application to Magnetic Multilayers and Giant Magnetoresistance

Food packaging applications multilayered polymers

Molecular glasses, optoelectronic applications electrical excitation, multilayer organic

Multilayered ceramics applications

Tape casting applications multilayered ceramics

Thick-film multilayer technology application

Thin-film multilayer interconnections applications

© 2024 chempedia.info