Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

APCI-MS

The term nebulizer is used generally as a description for any spraying device, such as the hair spray mentioned above. It is normally applied to any means of forming an aerosol spray in which a volume of liquid is broken into a mist of vapor and small droplets and possibly even solid matter. There is a variety of nebulizer designs for transporting a solution of analyte in droplet form to a plasma torch in ICP/MS and to the inlet/ionization sources used in electrospray and mass spectrometry (ES/MS) and atmospheric-pressure chemical ionization and mass spectrometry (APCI/MS). [Pg.138]

III) East LC-APCI-MS/MS analysis using a short luonolitliie separation eoluiun eoupled to a triple-quadiupole luass speetroiueter operating in luultiple reaetion luonitoring (MRM) detention luode. [Pg.11]

An on-line chromatography/atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCI/MS/MS) methods was developed for rapid screen of pharmacokinetics of different drugs, including 5 (98RCM1216). The electron impact mass spectrum of 5 and ethyl 9,10-difluoro-3-methyl-7-oxo-2,3-dihydro-7Ff-pyrido[l,2,3- fe]-l,4-benzoxazine-6-carboxylate was reported (97MI28). Electron impact/Fourier transform... [Pg.268]

Figure 5.1 Pesticides included in the systematic investigations on APCI-MS signal response dependence on eluent flow rate the parameter IsTow represents the distribution coefficient of the pesticide between n-octanol and water. Reprinted from J. Chromatogr, A, 937, Asperger, A., Efer, 1., Koal, T. and Engewald, W., On the signal response of various pesticides in electrospray and atmospheric pressure chemical ionization depending on the flow rate of eluent applied in liquid chromatography-mass spectrometry , 65-72, Copyright (2001), with permission from Elsevier Science. Figure 5.1 Pesticides included in the systematic investigations on APCI-MS signal response dependence on eluent flow rate the parameter IsTow represents the distribution coefficient of the pesticide between n-octanol and water. Reprinted from J. Chromatogr, A, 937, Asperger, A., Efer, 1., Koal, T. and Engewald, W., On the signal response of various pesticides in electrospray and atmospheric pressure chemical ionization depending on the flow rate of eluent applied in liquid chromatography-mass spectrometry , 65-72, Copyright (2001), with permission from Elsevier Science.
Aman, R. et al.. Application of HPLC coupled with DAD, APcI-MS and NMR to the analysis of lutein and zeaxanthin stereoisomers in thermally processed vegetables. Food Chem., 92 753, 2005. [Pg.237]

Tateo, F. and Bonomi, M., Fast determination of Sudan I by HPLC/APCI-MS in hot chili, spices, and oven-baked foods, J. Agric. Food Chem., 52, 655, 2004. [Pg.545]

Crescenzi et al. developed a multi-residue method for pesticides including propanil in drinking water, river water and groundwater based on SPE and LC/MS detection. The recoveries of the pesticides by this method were >80%. Santos etal. developed an on-line SPE method followed by LC/PAD and LC/MS detection in a simultaneous method for anilides and two degradation products (4-chloro-2-methylphenol and 2,4-dichlorophenol) of acidic herbicides in estuarine water samples. To determine the major degradation product of propanil, 3,4-dichloroaniline, the positive ion mode is needed for atmospheric pressure chemical ionization mass spectrometry (APCI/MS) detection. The LOD of 3,4-dichloroaniline by APCI/MS was 0.1-0.02 ng mL for 50-mL water samples. [Pg.341]

Immunosorbents have also found applicability in on-line SPE analysis. An antibody is immobilized on to a silica support and used as an affinity ligand to retain targeted analytes. Components not recognized by the antibody are not retained and some degree of selectivity is attained. Recoveries of 87-103% were obtained for atrazine, simazine, DEA, propazine, and terbuthylazine at the 0.2 xgL concentration level when using immunosorbent SPE (80 mg silica and 2 mg anti-atrazine and anti-chlortoluron antibodies) on-line with LC/APcI-MS however, this method is not applicable to DIA (0% recovery). This compound may be better retained when using an... [Pg.424]

Polymeric precolumns of styrene-divinylbenzene were used by Aguilar et al. to monitor pesticides in river water. Water samples (50 mL) were trace enriched on-line followed by analysis using LC combined with diode-array detection. LC atmospheric pressure chemical ionization (APCI) MS was used for confirmatory purposes. It was found that after the pesticides had been extracted from the water sample, they could be stored on the precartridges for up to 3 months without any detectable degradation. This work illustrates an advantage of SPE for water samples. Many pesticides which may not be stable when stored in water, even at low temperature, may be extracted and/or enriched on SPE media and stored under freezer conditions with no detectable degradation. This provides an excellent way to store samples for later analysis. [Pg.826]

Instrument HPLC HPLC HPLC HPLC HPLC LC/APCI-MS... [Pg.1134]

Currently, HPLC/fiuorescence is still the most common technique for the determination of residues of oxime carbamates. With the introduction of ESI and APCI MS interfaces, HPLC/MS analysis for oxime carbamates in various sample matrices has become widespread. However, for a rapid, sensitive, and specific analysis of biological and environmental samples, HPLC/MS/MS is preferred to HPLC/MS and HPLC/fiuorescence. With time, improved and affordable triple-quadrupole mass spectrometers will be available in more analytical laboratories. With stricter regulatory requirements, e.g., highly specific and conclusive methods with lower LOQ, HPLC/MS/MS will be a method of choice for oxime carbamates and their metabolites. [Pg.1161]

Table 6.22 summarises the main characteristics of APCI-MS. Sometimes the heat burden of the APCI interface causes thermal decomposition, which is unwelcome if the requested information is only the molecular weight. On the other hand, studying the thermal fragmentation can provide additional data about the sample. Since the thermal and collisional (CID) fragmentation do not necessarily follow the same pathway, the two methods do complement each other. Therefore, even good use can be made of the thermal decomposition for structure elucidation during APCI experiments [145],... [Pg.383]

Coupling of APCI-MS/MS to chromatography (typically LC) vastly increases the amount of chemical information obtained from either method alone. The rapid... [Pg.383]

APCI-MS/MS has shown the ability to identify and resolve complex products, including isomers, emanating from a TG apparatus [146]. [Pg.383]

Applications APCI-MS is often more widely applicable than ESI-MS to the analysis of classes of compounds with a low molecular weight, such as basic drugs and their metabolites, antibiotics, steroids, oestrogens, benzodiazepines, pesticides, surfactants, and most other organic compounds amenable to El. LC-APCI-MS has been used to analyse PET extracts obtained by a disso-lution/precipitation procedure [147]. Other applications of hyphenated APCI mass spectrometric techniques are described elsewhere LC-APCI-MS (Section 7.33.2) and packed column SFC-APCI-MS (Section 73.2.2) for polar nonvolatile organics. [Pg.383]

APCI-MS/MS is not only useful in the analysis of polymers, such as cellulose acetate, but is also of great value in the identification of copolymer substrates, and the various polymer additives such as antioxidants, stabilisers, and plasticisers. [Pg.383]

Ionisation processes in IMS occur in the gas phase through chemical reactions between sample molecules and a reservoir of reactive ions, i.e. the reactant ions. Formation of product ions in IMS bears resemblance to the chemistry in both APCI-MS and ECD technologies. Much yet needs to be learned about the kinetics of proton transfers and the structures of protonated gas-phase ions. Parallels have been drawn between IMS and CI-MS [277]. However, there are essential differences in ion identities between IMS, APCI-MS and CI-MS (see ref. [278]). The limited availability of IMS-MS (or IMMS) instruments during the last 35 years has impeded development of a comprehensive model for APCI. At the present time, the underlying basis of APCI and other ion-molecule events that occur in IMS remains vague. Rival techniques are MS and GC-MS. There are vast differences in the principles of ion separation in MS versus IMS. [Pg.416]

Applications With the current use of soft ionisation techniques in LC-MS, i.e. ESI and APCI, the application of MS/MS is almost obligatory for confirmatory purposes. However, an alternative mass-spectrometric strategy may be based on the use of oaToF-MS, which enables accurate mass determination at 5 ppm. This allows calculation of the elemental composition of an unknown analyte. In combination with retention time data, UV spectra and the isotope pattern in the mass spectrum, this should permit straightforward identification of unknown analytes. Hogenboom et al. [132] used such an approach for identification and confirmation of analytes by means of on-line SPE-LC-ESI-oaToFMS. Off-line SPE-LC-APCI-MS has been used to determine fluorescence whitening agents (FWAs) in surface waters of a Catalan industrialised area [138]. Similarly, Alonso et al. [139] used off-line SPE-LC-DAD-ISP-MS for the analysis of industrial textile waters. SPE functions here mainly as a preconcentration device. [Pg.448]

Dobanol Ethoxy late [443], At least 16 Triton units with mass 910 were observed. A study of the reactions of amines and amine derivatives with scC02 using cSFC-MS was also reported [448], Both cSFC-APCI-MS and cSFC-ESI-MS of PEG 600 and PPG 425 were described [416]. Direct insertion probe (DIP) methodology was used for the structure analysis of the antistatic agent V,fV-bis-(2-hydroxyethyl)alkylamine. When analysed by SFC-MS coupling, the same sample could be separated into six components. The alkyl chains consist of saturated Cn, Ci4, C16 and C18 chains and of Cig chains with one double bond where 18 1 and 16 0 chains dominate. [Pg.484]

LC-APCI-MS is a derivative of discharge-assisted thermospray, where the eluent is ionised at atmospheric pressure. In an atmospheric pressure chemical ionisation (APCI) interface, the column effluent is nebulised, e.g. by pneumatic or thermospray nebulisation, into a heated tube, which vaporises nearly all of the solvent. The solvent vapour acts as a reagent gas and enters the APCI source, where ions are generated with the help of electrons from a corona discharge source. The analytes are ionised by common gas-phase ion-molecule reactions, such as proton transfer. This is the second-most common LC-MS interface in use today (despite its recent introduction) and most manufacturers offer a combined ESI/APCI source. LC-APCI-MS interfaces are easy to operate, robust and do not require extensive optimisation of experimental parameters. They can be used with a wide variety of solvent compositions, including pure aqueous solvents, and with liquid flow-rates up to 2mLmin-1. [Pg.506]

HPLC-APCI-MS data are found to be most useful when the chemical identity of additives in a polymer is already known (verification) otherwise tandem MS... [Pg.507]


See other pages where APCI-MS is mentioned: [Pg.248]    [Pg.196]    [Pg.197]    [Pg.248]    [Pg.152]    [Pg.420]    [Pg.420]    [Pg.423]    [Pg.424]    [Pg.426]    [Pg.429]    [Pg.766]    [Pg.834]    [Pg.1142]    [Pg.45]    [Pg.272]    [Pg.278]    [Pg.383]    [Pg.485]    [Pg.499]    [Pg.499]    [Pg.506]    [Pg.507]    [Pg.507]    [Pg.507]   


SEARCH



APCI (

© 2024 chempedia.info