Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anthocyanins types

Jurd, L., Some advances in the chemistry of anthocyanins-type plant pigments, in The Chemistry of Plant Pigments, Chichester, C.O., Ed., Academic Press, New York, 1972, 123. [Pg.274]

Saito, N. and Flarborne, J.B., Correlations between anthocyanin type, pollinator and flower colour in the Labiatae, Phytochemistry, 31, 3009, 1992. [Pg.530]

Surprisingly, to date there are no reports on such prominent convolvulaceous genera as Argyreia, Astripomoea, Bonamia, Convolvulus, Maripa, Stictocardia, or Turbina though the corollas - of at least certain species - apparently are characterized by anthocyanin-type flower pigments. [Pg.318]

Port-type ted dessert wines require skin contact time to extract the anthocyanins, but the fermentation must be short to retain the sugar level neat the 6—10% level desired. The winemaker cannot always achieve desired composition in individual lots. In order to teach the desired standard, it is necessary to make new lots to enable blending to that standard. The right volume of a tedder, less sweet wine will need to be made to bring to standard a lot with low color and mote sugar, for example, while keeping the alcohol also within the desired limits. [Pg.374]

Co-pigmentation of anthocyanins generally produces more intensely colored and more stable pigments than anthocyanin only. Two types of co-pigmentation reactions are mentioned in the literature. The first one involves intramolecular... [Pg.72]

The positions, numbers, and types of sugars on the anthocyanin molecule influence its bioaccessibility. Indeed, a recent human study reported that the acylation of anthocyaifins resulted in a sigififlcant decrease of anthocyanin recoveries in plasma and urine. In addition, anthocyanins form linkages with aromatic acids, aliphatic acids, and methyl ester derivatives, which can also affect their passage through the intestinal barrier. [Pg.158]

Malvidin was detected in amounts greater than 10% of the total anthocyanin content only in 4 of 44 fruits listed in Table 4.3.1, in none of the 13 vegetables shown in Table 4.3.3, and in 2 grains and nuts presented in Table 4.3.4. Malvidin is widespread in all types of grapes being one of the major anthocyanidins found in grapes shown in Table 4.3.2. None of the foods listed in the tables presented malvidin as the sole aglycone. [Pg.256]

Dangles, O. et al.. Two very distinct types of anthocyanins complexation — copigmentation and inclusion. Tetrahedron Lett., 33, 5227, 1992. [Pg.275]

The food technologist may be especially interested in the fate of the carotenoids in the seed oil. Like red palm oil, the resulting carotenoid-pigmented canola oil may be more stable due to the antioxidant properties of carotenoids and may be more attractive to consumers. Alternatively, for food security concerns, transgenic soybean or canola oils and seed meals that are genetically modified for more efficient bio-diesel production may be bio-safety marked with lipid-soluble carotenoids and water-soluble anthocyanins, respectively. Potatoes are excellent potential sources of dietary carotenoids, and over-expression of CrtB in tubers led to the accumulation of P-carotene. Potatoes normally have low levels of leaf-type carotenoids, like canola cotyledons. [Pg.375]

The extraction of anthocyanins is the first step in the determination of both total and individual anthocyanins in any type of plant tissue. The choice of an extraction method is of great importance in the analysis of anthocyanins and largely depends on the purpose of the extraction, the nature of the anthocyanins, and the source material. A good extraction procedure should maximize anthocyanin recovery with... [Pg.480]

Extraction procedures must be adjusted when separated anthocyanins will be tested in biological studies. We have found that the types of acids used for anthocyanin extraction as well as their residual concentrations in the final extract may affect the results obtained from biological tests. The growth inhibitory effect of anthocyanins on HT29 (human colonic cancer) cells may be overestimated if the residual acid in the extract exerts a toxic effect on the cells. Acetic acid residues in anthocyanin extracts showed less toxicity to HT29 cells than hydrochloric acid when samples were prepared under the same extraction procedure and subjected to the same tests on HT29 cells. In addition, the procedure to remove acids affected the acid residual concentration as well in final anthocyanin extracts, with lyophilization being more successful than rotary evaporation. [Pg.482]

Ju and Howard (2003) studied pressurized hquid extraction of anthocyanins from dried red grape skins with six solvents at temperatures ranging from 20 to 140°C using 10.1 MPa. They found that the type of solvent and the temperature used affected the types and levels of anthocyanins in the PLE extracts. [Pg.483]

Tandem mass spectrometry (MS-MS) uses more than one mass analyzer for structural and sequencing studies that have been found very useful for anthocyanin characterization. These mass analyzers may be of the same type (triple or quadru-poie)85,86 Qj. such as ion trap quadrupole, - and quadrupole-time-of-flight... [Pg.493]

The numbers and types of fragments depend on the anthocyanin structure pattern. The aglycone (anthocyanidin) ordinarily is very stable and cannot be broken easily. In most cases, cleavage of the glycosidic groups will occur to generate small amounts of anthocyanidins in addition to the intact anthocyanin molecular ions. [Pg.494]

Different types of mass analyzers have been used for anthocyanin analysis single or triple quadrupole mass analyzers, TOP mass analyzer,ion trap mass analyzers,and the combination of analyzers cited above. " ... [Pg.495]

To detect adulteration of wine. Bums et al. (2002) found that the ratios of acetylated to p-coumaroylated conjugates of nine characteristic anthocyanins served as useful parameters to determine grape cultivars for a type of wine. Our laboratory utilized mid-infrared spectroscopy combined with multivariate analysis to provide spectral signature profiles that allowed the chemically based classification of antho-cyanin-containing fruits juices and produced distinctive and reproducible chemical fingerprints, making it possible to discriminate different juices. " This new application of ATR-FTIR to detect adulteration in anthocyanin-containing juices and foods may be an effective and efficient method for manufacturers to assure product quality and authenticity. [Pg.497]

Flavan-3,4-diols FIavan-3,4-diols, also known as leucoanthocyanidins, are not particularly prevalent in the plant kingdom, instead being themselves precursors of flavan-3-ols (catechins), anthocyanidins, and condensed tannins (proanthocyanidins) (see Fig. 5.4). Flavan-3,4-diols are synthesized from dihydroflavonol precursors by the enzyme dihydroflavonol 4-reductase (DFR), through an NADPH-dependent reaction (Anderson and Markham 2006). The substrate binding affinity of DFR is paramount in determining which types of downstream anthocyanins are synthesized, with many fruits and flowers unable to synthesize pelargonidin type anthocyanins, because their particular DFR enzymes cannot accept dihydrokaempferol as a substrate (Anderson and Markham 2006). [Pg.147]

Recently, a new polyketide biosynthetic pathway in bacteria that parallels the well studied plant PKSs has been discovered that can assemble small aromatic metabolites.8,9 These type III PKSs10 are members of the chalcone synthase (CHS) and stilbene synthase (STS) family of PKSs previously thought to be restricted to plants.11 The best studied type III PKS is CHS. Physiologically, CHS catalyzes the biosynthesis of 4,2, 4, 6 -tetrahydroxychalcone (chalcone). Moreover, in some organisms CHS works in concert with chalcone reductase (CHR) to produce 4,2 ,4 -trihydroxychalcone (deoxychalcone) (Fig. 12.1). Both natural products constitute plant secondary metabolites that are used as precursors for the biosynthesis of anthocyanin pigments, anti-microbial phytoalexins, and chemical inducers of Rhizobium nodulation genes.12... [Pg.198]

Numerous CE separations have been published for synthetic colours, sweeteners and preservatives (Frazier et al., 2000a Sadecka and Polonsky, 2000 Frazier et al., 2000b). A rapid CZE separation with diode array detection for six common synthetic food dyes in beverages, jellies and symps was described by Perez-Urquiza and Beltran (2000). Kuo et al. (1998) separated eight colours within 10 minutes using a pH 9.5 borax-NaOH buffer containing 5 mM /3-cyclodextrin. This latter method was suitable for separation of synthetic food colours in ice-cream bars and fmit soda drinks with very limited sample preparation. However the procedure was not validated for quantitative analysis. A review of natural colours and pigments analysis was made by Watanabe and Terabe (2000). Da Costa et al. (2000) reviewed the analysis of anthocyanin colours by CE and HPLC but concluded that the latter technique is more robust and applicable to complex sample types. Caramel type IV in soft drinks was identified and quantified by CE (Royle et al., 1998). [Pg.124]

The anthocyanins are glucosides of polyhydric phenols and phenol ethers having OH and phenyl as substituents in the pyran ring. These glucosides can be regarded as derived from three types of sugar-free anthocyanidins. [Pg.268]

Fig. 2.102. Structures of all the compounds found in fraction A (a) anthocyanins (b) A-type vitisins (c) pyranoanthocyanins originated by reaction between anthocyanins and vynilphenol, vynilcatechol or vynilguaiacol (d) pyranoanthocyanins originated by reaction between anthocyanins and vynil(epi)catechin. Reprinted with permission from C. Alcalde-Eon et al. [236],... Fig. 2.102. Structures of all the compounds found in fraction A (a) anthocyanins (b) A-type vitisins (c) pyranoanthocyanins originated by reaction between anthocyanins and vynilphenol, vynilcatechol or vynilguaiacol (d) pyranoanthocyanins originated by reaction between anthocyanins and vynil(epi)catechin. Reprinted with permission from C. Alcalde-Eon et al. [236],...

See other pages where Anthocyanins types is mentioned: [Pg.52]    [Pg.193]    [Pg.199]    [Pg.402]    [Pg.167]    [Pg.214]    [Pg.468]    [Pg.52]    [Pg.193]    [Pg.199]    [Pg.402]    [Pg.167]    [Pg.214]    [Pg.468]    [Pg.368]    [Pg.181]    [Pg.73]    [Pg.77]    [Pg.242]    [Pg.244]    [Pg.256]    [Pg.256]    [Pg.261]    [Pg.263]    [Pg.263]    [Pg.494]    [Pg.45]    [Pg.101]    [Pg.140]    [Pg.146]    [Pg.246]    [Pg.100]    [Pg.115]    [Pg.115]    [Pg.200]    [Pg.114]    [Pg.252]   
See also in sourсe #XX -- [ Pg.400 ]




SEARCH



© 2024 chempedia.info