Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia with sulfur

Ammonium sulfate is produced as a caprolactam by-product from the petrochemical industry, as a coke by-product, and synthetically through reaction of ammonia with sulfuric acid. Only the third process is covered in our discussion. The reaction between anunonia and sulfuric acid produces an ammonium sulfate solution that is continuously circulated through an evaporator to thicken the solution and to produce ammonium sulfate crystals. The crystals are separated from the liquor in a centrifuge, and the liquor is returned to the evaporator. The crystals are fed either to a fluidized bed or to a rotary drum dryer and are screened before bagging or bulk loading. [Pg.64]

Ammonium sulfate fertilizer is made by reacting ammonia with sulfuric acid. In many parts of the world, calcium sulfate is in mineral form convertible to ammonium sulfate by combining it with ammonia and water - a virtually limitless source of sulfur. [Pg.264]

SRU A variation of the Claus process, for use in the presence of ammonia. It uses a special reactor, designed to avoid plugging by compounds of ammonia with sulfur trioxide. Designed by JGC Corporation. Thirty one units were in operation as of 1992. [Pg.253]

Exercise 2-6 Write balanced equations for the reactions of (a) ammonia with sulfuric acid, (b) CH3CH2NH2 with sulfuric acid, (c) sodium hydroxide with ammonium... [Pg.44]

The ammonium bicarbonate used was a technical grade product manufactured in the United Kingdom by the Imperial Chemical Industries, Ltd. Titration of this product for ammonia with sulfuric acid to the methyl orange end point indicated a purity of approximately 100%. [Pg.185]

N 21.2% odorless, orthorhombic cryst or white granules mp 280° (decompn) d 1.77g/cc. Sol in w insol in acet and ethanol. CA Registry No [7783-20-2] - Prepn is by reacting ammonia with sulfuric acid... [Pg.462]

A first part of water contamination originates from dissolved organics. Let us assume a yield for AN separation of 98.5% with 1.5% losses in water. Sour water concerns the neutralization of ammonia with sulfuric acid. The lights and heavies are incinerated. Summing up, the following environmental costs should be included ... [Pg.40]

Other variations of the caprolactam process produce hydroxylamine disulfonic acid which is hydrolyzed to hydroxylamine sulfate and an ammonium sulfate by-product. Additional ammonium sulfate is produced downstream in the oximation step by the reaction of ammonia with sulfuric acid. Ammonium sulfate is a low value by-product and there is an advantage to producing hydroxylamine sulfate directly in order to avoid the production of unwanted ammonium sulfate downstream. The oxygen-based NO reduction process provides this advantage and the processes that use it are characterized as low by-product production processes. [Pg.193]

Directly reacting gaseous ammonia with sulfuric acid in a spray tower to form a dry, amorphous product. [Pg.244]

Ammonium sulfate, an important fertilizer, can be prepared by the reaction of ammonia with sulfuric acid ... [Pg.401]

Ammonium sulfate is used as a nitrogen and sulfur fertilizer. It is produced by reacting ammonia with sulfuric acid. Write the balanced equation for the reaction of gaseous... [Pg.219]

Boron trifluoride catalyst may be recovered by distillation, chemical reactions, or a combination of these methods. Ammonia or amines are frequently added to the spent catalyst to form stable coordination compounds that can be separated from the reaction products. Subsequent treatment with sulfuric acid releases boron trifluoride. An organic compound may be added that forms an adduct more stable than that formed by the desired product and boron trifluoride. In another procedure, a fluoride is added to the reaction products to precipitate the boron trifluoride which is then released by heating. Selective solvents may also be employed in recovery procedures (see Catalysts,regeneration). [Pg.162]

Ammonium fluorosulfate is produced from ammonium fluoride by reaction with sulfur trioxide, oleum, or potassium pyrosulfate, 1 2820 (48). Solutions of ammonium fluorosulfate show Htfle evidence of hydrolysis and the salt may be recrystallized from hot water. Ammonium fluorosulfate absorbs anhydrous ammonia to form a series of Hquid amines that contain 2.5—6 moles of ammonia per mole of salt (77). [Pg.250]

HydrometaHurgical Processes. The hydrometaHurgical treatments of oxide ores involve leaching with ammonia or with sulfuric acid. In the ammoniacal leaching process, the nickel oxide component of the ore first is reduced selectively. Then the ore is leached with ammonia which removes the nickel into solution, from which it is precipitated as nickel carbonate by heating. A nickel oxide product used in making steel is produced by roasting the carbonate. [Pg.3]

Qualitative Analysis. Nitric acid may be detected by the classical brown-ring test, the copper-turnings test, the reduction of nitrate to ammonia by active metal or alloy, or the nitrogen precipitation test. Nitrous acid or nitrites interfere with most of these tests, but such interference may be eliminated by acidifying with sulfuric acid, adding ammonium sulfate crystals, and evaporating to alow volume. [Pg.46]

Chevron Chemical Co. began commercial production of isophthahc acid in 1956. The sulfur-based oxidation of / -xylene in aqueous ammonia at about 320°C and 7,000—14,000 kPa produced the amide. This amide was then hydrolyzed with sulfuric acid to produce isophthahc acid at about 98% purity. Arco Chemical Co. began production in 1970 using air oxidation in acetic acid catalyzed by a cobalt salt and promoted by acetaldehyde at 100—150°C and 1400—2800 kPa (14—28 atm). The cmde isophthahc acid was dissolved and recrystallized to yield a product exceeding 99% purity. The Arco technology was not competitive and the plant was shut down in 1974. [Pg.493]

Ammonium Sulfite—Sodium Chloride Process. Ammonium chloride has been produced by the reaction of ammonium sulfite [10196-04-0] NH SO, and sodium chloride ia a large Canadian plant (14). Ammonium sulfite is never actually isolated, rather ammonia and sulfur dioxide react ia water with sodium chloride. [Pg.364]

Arsine is formed when any inorganic arsenic-bearing material is brought in contact with zinc and sulfuric acid. The arsenides of the electropositive metals are decomposed with the formation of arsine by water or acid. Calcium arsenide [12255-53-7] Ca2As2, treated with water gives a 14% yield of arsine. Better yields (60—90%) are obtained by decomposing a solution of sodium arsenide [12044-25-6] Na As, in Hquid ammonia with ammonium bromide (14,15). Arsine may be accidentally formed by the reaction of arsenic impurities in commercial acids stored in metal tanks, so that a test should be made for... [Pg.332]

Arsenic pentasulfide (arsenic(V) sulfide), As S q, is stable in air up to 95°C, but at higher temperatures begins to dissociate into arsenous sulfide and sulfur. It is prepared by the fusion of arsenic with sulfur foUowed by extraction with ammonia and reprecipitation at low temperatures by addition of hydrochloric acid. Arsenic pentasulfide is precipitated at low temperatures from strongly acidic arsenate solutions by a rapid stream of hydrogen sulfide. It is hydrolyzed by boiling with water, yielding arsenous acid and sulfur. Salts derived from a number of thioarsenic acids are formed from arsenic pentasulfide and alkaH metal sulfides. [Pg.334]

Allied-Signal Process. Cyclohexanone [108-94-1] is produced in 98% yield at 95% conversion by liquid-phase catal57tic hydrogenation of phenol. Hydroxylamine sulfate is produced in aqueous solution by the conventional Raschig process, wherein NO from the catalytic air oxidation of ammonia is absorbed in ammonium carbonate solution as ammonium nitrite (eq. 1). The latter is reduced with sulfur dioxide to hydroxylamine disulfonate (eq. 2), which is hydrolyzed to acidic hydroxylamine sulfate solution (eq. 3). [Pg.429]

Hydroxylamine sulfate is produced by direct hydrogen reduction of nitric oxide over platinum catalyst in the presence of sulfuric acid. Only 0.9 kg ammonium sulfate is produced per kilogram of caprolactam, but at the expense of hydrogen consumption (11). A concentrated nitric oxide stream is obtained by catalytic oxidation of ammonia with oxygen. Steam is used as a diluent in order to avoid operating within the explosive limits for the system. The oxidation is followed by condensation of the steam. The net reaction is... [Pg.429]

A flow diagram for the system is shown in Figure 5. Feed gas is dried, and ammonia and sulfur compounds are removed to prevent the irreversible buildup of insoluble salts in the system. Water and soHds formed by trace ammonia and sulfur compounds are removed in the solvent maintenance section (96). The pretreated carbon monoxide feed gas enters the absorber where it is selectively absorbed by a countercurrent flow of solvent to form a carbon monoxide complex with the active copper salt. The carbon monoxide-rich solution flows from the bottom of the absorber to a flash vessel where physically absorbed gas species such as hydrogen, nitrogen, and methane are removed. The solution is then sent to the stripper where the carbon monoxide is released from the complex by heating and pressure reduction to about 0.15 MPa (1.5 atm). The solvent is stripped of residual carbon monoxide, heat-exchanged with the stripper feed, and pumped to the top of the absorber to complete the cycle. [Pg.57]

For operations producing 30,000 tons or less of copper annuaHy, hydrometaHurgy offers an alternative to smelting that avoids problems associated with sulfur dioxide recovery and environmental controls. Techniques include the Anaconda oxygen—ammonia leaching process, the Lake Shore roast-leach-electrowin process, and ferric chloride leaching processes for the treatment of copper sulfides. AH the facHities that use these techniques encountered serious technical problems and were shut down within a few years of start-up. [Pg.205]

Other problems that can be associated with the high dust plant can include alkaH deterioration from sodium or potassium in the stack gas deposition on the bed, calcium deposition, when calcium in the flue gas reacts with sulfur trioxide, or formation and deposition of ammonium bisulfate. In addition, plugging of the air preheater as weU as contamination of flyash and EGD wastewater discharges by ammonia are avoided if the SCR system is located after the FGD (23). [Pg.511]

Benzisothiazoles can be prepared by the reaction of aromatic chloro compounds with sulfur and ammonia. Thus, 2,6-dichlorobenzylidene chloride gives 4-chloro-l,2-benzisothiazole (72AHC(14)43), and 2-chlorobenzophenone gives 3-phenyl-l,2-benziso-thiazole (79GEP27 34866). [Pg.169]

Metals and alloys, the principal industrial metalhc catalysts, are found in periodic group TII, which are transition elements with almost-completed 3d, 4d, and 5d electronic orbits. According to theory, electrons from adsorbed molecules can fill the vacancies in the incomplete shells and thus make a chemical bond. What happens subsequently depends on the operating conditions. Platinum, palladium, and nickel form both hydrides and oxides they are effective in hydrogenation (vegetable oils) and oxidation (ammonia or sulfur dioxide). Alloys do not always have catalytic properties intermediate between those of the component metals, since the surface condition may be different from the bulk and catalysis is a function of the surface condition. Addition of some rhenium to Pt/AlgO permits the use of lower temperatures and slows the deactivation rate. The mechanism of catalysis by alloys is still controversial in many instances. [Pg.2094]

WILLGERODT- KINDLER Rearrangement Rearrangement ot ketones to amides by heating with sulfur and ammonia or amines. [Pg.416]

Embrittlement embrittlement and for improperly heat treated steel, both of which give intergranular cracks. (Intercrystalline penetration by molten metals is also considered SCC). Other steels in caustic nitrates and some chloride solutions. Brass in aqueous ammonia and sulfur dioxide. physical environments. bases of small corrosion pits, and cracks form with vicious circle of additional corrosion and further crack propagation until failure occurs. Stresses may be dynamic, static, or residual. stress relieve susceptible materials. Consider the new superaustenitic stainless steels. [Pg.254]


See other pages where Ammonia with sulfur is mentioned: [Pg.37]    [Pg.220]    [Pg.37]    [Pg.220]    [Pg.182]    [Pg.169]    [Pg.216]    [Pg.166]    [Pg.278]    [Pg.379]    [Pg.495]    [Pg.38]    [Pg.40]    [Pg.332]    [Pg.39]    [Pg.254]    [Pg.76]    [Pg.161]    [Pg.2097]    [Pg.83]   
See also in sourсe #XX -- [ Pg.341 ]




SEARCH



Sulfur ammonia

© 2024 chempedia.info