Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deactivation rates

Kinetic Considerations. The reaction kinetics are masked by a desorption process as shown below and are further complicated by rate deactivation. The independence of the 400-sec rate on reactant mole ratio is not indicative of zero-order kinetics but results because of the nature of the particular kinetic, desorption, and rate decay relationships under these conditions. It would not be expected to be more generally observed under widely varying conditions. The initial rate behavior is considered more indicative of the intrinsic kinetics of the system and is consistent with a model involving competitive adsorption between the two reactants with the olefin being more strongly adsorbed. Such kinetic behavior is consistent with that reported by Venuto (16). Kinetic analysis depends on the assumption that quasi-steady state behavior holds for the rate during rate decay and that the exponential decay extrapolation is valid as time approaches zero. Detailed quantification of the intrinsic kinetics was not attempted in this work. [Pg.565]

The deactivation rates calculated for the SBCR-new and CSTR cases followed a linear zero order fashion with decay constants of 0.0130 and 0.0142 day, respectively. The apparent catalyst activity decline of the SBCR-old appeared to have two distinct rate deactivation periods ... [Pg.412]

Total concentration, mol/1 H2/hydrocarbons, mol/mol Diffusivity, cm /s Adsorption equilibrium Adsorption energy Reaction rate Deactivation Self-regeneration... [Pg.606]

These inductive and resonance effects either raise or lower the energy of the cation intermediate, which, in turn, raises (decreasing rate, deactivation) or lowers (increasing rate, activation) the rate-limiting energy barrier (activation energy) of reaction. [Pg.981]

Ammonia decomposition over Fe, Cu, Ag, Au, and Pt Hydrolysis of starch to glucose catalyzed by acids Mixture of coal gas and air makes a platinum wire white hot Measurements on the rate of H2O2 decomposition Selective oxidation of ethanol to acetic acid over platinum Comprehensive paper on the H2 + O2 reaction on platinum foils, including reaction rates, deactivation, reactivation, and poisoning Definition of catalysis, catalyst, and catalytic force First quantitative analysis of reaction rates Systematic studies on the concentration dependence of reaction rates First concise monograph on chemical kinetics Definition of order of reaction Arrhenius equation k = u exp (-Ea/RT)... [Pg.5]

In contrast to the bimoleciilar recombination of polyatomic radicals ( equation (A3.4.34)1 there is no long-lived intennediate AB smce there are no extra intramolecular vibrational degrees of freedom to accommodate the excess energy. Therefore, the fonnation of the bond and the deactivation tlirough collision with the inert collision partner M have to occur simultaneously (within 10-100 fs). The rate law for trimoleciilar recombination reactions of the type in equation (A3.4.47) is given by... [Pg.770]

The collision partners may be any molecule present in the reaction mixture, i.e., inert bath gas molecules, but also reactant or product species. The activation k and deactivation krate constants in equation (A3.4.125) therefore represent the effective average rate constants. [Pg.787]

The effective rate law correctly describes the pressure dependence of unimolecular reaction rates at least qualitatively. This is illustrated in figure A3,4,9. In the lunit of high pressures, i.e. large [M], becomes independent of [M] yielding the high-pressure rate constant of an effective first-order rate law. At very low pressures, product fonnation becomes much faster than deactivation. A j now depends linearly on [M]. This corresponds to an effective second-order rate law with the pseudo first-order rate constant Aq ... [Pg.788]

Figure B2.5.19. The collisional deactivation rate constant /c, (O3) (equation B2.5.42 ) as a fimction of the vibrational level v". Adapted from [ ]. Experimental data are represented by full circles with error bars. The broken curve is to serve as a guide to the eye. Figure B2.5.19. The collisional deactivation rate constant /c, (O3) (equation B2.5.42 ) as a fimction of the vibrational level v". Adapted from [ ]. Experimental data are represented by full circles with error bars. The broken curve is to serve as a guide to the eye.
There are certain limitations to the usefulness of nitration in aqueous sulphuric acid. Because of the behaviour of the rate profile for benzene, comparisons should strictly be made below 68% sulphuric acid ( 2.5 fig. 2.5) rates relative to benzene vary in the range 68-80% sulphuric acid, and at the higher end of this range are not entirely measures of relative reactivity. For deactivated compounds this limitation is not very important, but for activated compounds it is linked with a fundamental limit to the significance of the concept of aromatic reactivity as already discussed ( 2.5), nitration in sulphuric acid cannot differentiate amongst compounds not less than about 38 times more reactive than benzene. At this point differentiation disappears because reactions occur at the encounter rate. [Pg.124]

For deactivated compounds this limitation does not exist, and nitration in sulphuric acid is an excellent method for comparing the reactivities of such compounds. For these, however, there remains the practical difficulty of following slow reactions and the possibility that with such reactions secondary processes might become important. With deactivated compounds, comparisons of reactivities can be made using nitration in concentrated sulphuric acid such comparisons are not accurate because of the behaviour of rate profiles at high acidities ( 2.3.2 figs. 2.1, 2.3). [Pg.124]

Table 9.7 contains recent data on the nitration of polychlorobenzenes in sulphuric acid. The data continue the development seen with the diehlorobenzenes. The introduetion of more substituents into these deactivated systems has a smaller effect than predicted. Whereas the -position in ehlorobenzene is four times less reactive than a position in benzene, the remaining position in pentachlorobenzene is about four times more reactive than a position in 1,3,4,5-tetraehlorobenzene. The chloro substituent thus activates nitration, a circumstance recalling the faet that o-chloronitrobenzene is more reactive than nitrobenzene. As can be seen from table 9.7, the additivity prineiple does not work very well with these compounds, underestimating the rate of reaction of pentachlorobenzene by a factor of nearly 250, though the failure is not so marked in the other cases, especially viewed in the circumstance of the wide range of reactivities covered. [Pg.189]

The nitration of nitro- and dinitro-biphenyls has been examined by several workers. i - As would be expected, nitration of the nitro-biphenyls occurs in the phenyl ring. Like a phenyl group, a nitrophenyl group is 0 -directing, but like certain substituents of the type CH CHA ( 9.1.6) it is, except in the case of w-nitrophenyl, deactivating. Partial rate factors for the nitration at o °C of biphenyl and the nitro-biphenyls with solutions prepared from nitric acid and acetic anhydride are given below. The high o p-v2X o found for nitration of biphenyl... [Pg.202]

The first quantitative studies of the nitration of quinoline, isoquinoline, and cinnoline were made by Dewar and Maitlis, who measured isomer proportions and also, by competition, the relative rates of nitration of quinoline and isoquinoline (1 24-5). Subsequently, extensive kinetic studies were reported for all three of these heterocycles and their methyl quaternary derivatives (table 10.3). The usual criteria established that over the range 77-99 % sulphuric acid at 25 °C quinoline reacts as its cation (i), and the same is true for isoquinoline in 71-84% sulphuric acid at 25 °C and 67-73 % sulphuric acid at 80 °C ( 8.2 tables 8.1, 8.3). Cinnoline reacts as the 2-cinnolinium cation (nia) in 76-83% sulphuric acid at 80 °C (see table 8.1). All of these cations are strongly deactivated. Approximate partial rate factors of /j = 9-ox io and /g = i-o X io have been estimated for isoquinolinium. The unproto-nated nitrogen atom of the 2-cinnolinium (ina) and 2-methylcinno-linium (iiiA) cations causes them to react 287 and 200 more slowly than the related 2-isoquinolinium (iia) and 2-methylisoquinolinium (iii)... [Pg.208]

A more detailed study of the nitration of quinolinium (l) in 80-05 % sulphuric acid at 25 °C, using isotopic dilution analysis, has shown that 3-) 5-) 6-, 7- and 8-nitroquinoline are formed (table 10.3). Combining these results with the kinetic ones, and assuming that no 2- and 4-nitration occurs, gives the partial rate factors listed in table 10.4. Isoquinolinium is 14 times more reactive than quinolinium. The strong deactivation of the 3-position is in accord with an estimated partial rate factor of io for hydrogen isotope exchange at the 3-position in the pyridinium ion. It has been estimated that the reactivity of this ion is at least 10 less than that of the quinolinium ion. Based on this estimate, the partial rate factor for 3-nitration of the pyridinium ion would be less than 5 x io . [Pg.212]

All the ring positions of (trifluoromethyl)benzene are deactivated compared with benzene The meta position is simply deactivated less than the ortho and para positions The partial rate factors for nitration of (trifluoromethyl)benzene are... [Pg.493]

Table 12 2 summarizes orientation and rate effects m electrophilic aromatic sub stitution reactions for a variety of frequently encountered substituents It is arranged m order of decreasing activating power the most strongly activating substituents are at the top the most strongly deactivating substituents are at the bottom The mam features of the table can be summarized as follows... [Pg.494]

Deactivating substituent (Sections 12 11 and 12 13) A group that when present in place of hydrogen causes a particular reaction to occur more slowly The term is most often ap plied to the effect of substituents on the rate of electrophilic aromatic substitution... [Pg.1280]

Pure dry reactants are needed to prevent catalyst deactivation effective inhibitor systems are also desirable as weU as high reaction rates, since many of the specialty monomers are less stable than the lower alkyl acrylates. The alcohol—ester azeotrope (8) should be removed rapidly from the reaction mixture and an efficient column used to minimize reactant loss to the distillate. After the reaction is completed, the catalyst may be removed and the mixture distilled to obtain the ester. The method is particularly useful for the preparation of functional monomers which caimot be prepared by direct esterification. [Pg.156]

Conditions of hydrogenation also determine the composition of the product. The rate of reaction is increased by increases in temperature, pressure, agitation, and catalyst concentration. Selectivity is increased by increasing temperature and negatively affected by increases in pressure, agitation, and catalyst. Double-bond isomerization is enhanced by a temperature increase but decreased with increasing pressure, agitation, and catalyst. Trans isomers may also be favored by use of reused (deactivated) catalyst or sulfur-poisoned catalyst. [Pg.126]

Propylene, butylenes, or amylenes are combiaed with isobutane ia the presence of an acid catalyst, eg, sulfuric acid or hydrofluoric acid, at low temperatures (1—40°C) and pressures, 102—1035 kPa (1—10 atm). Sulfuric acid or hydrogen fluoride are the catalysts used commercially ia refineries. The acid is pumped through the reactor and forms an emulsion with reactants, and the emulsion is maintained at 50% acid. The rate of deactivation varies with the feed and isobutane charge rate. Butene feeds cause less acid consumption than the propylene feeds. [Pg.207]


See other pages where Deactivation rates is mentioned: [Pg.474]    [Pg.127]    [Pg.533]    [Pg.193]    [Pg.191]    [Pg.243]    [Pg.343]    [Pg.474]    [Pg.127]    [Pg.533]    [Pg.193]    [Pg.191]    [Pg.243]    [Pg.343]    [Pg.858]    [Pg.2696]    [Pg.203]    [Pg.62]    [Pg.125]    [Pg.183]    [Pg.185]    [Pg.187]    [Pg.191]    [Pg.192]    [Pg.207]    [Pg.214]    [Pg.215]    [Pg.488]    [Pg.502]    [Pg.509]    [Pg.416]    [Pg.47]    [Pg.452]    [Pg.274]    [Pg.525]    [Pg.508]   
See also in sourсe #XX -- [ Pg.568 ]




SEARCH



Acidic zeolites, deactivation rates

Aging rate deactivation kinetics

Atom transfer radical polymerization deactivation rate constants

Catalyst deactivation rate

Catalyst deactivation rate, impact

Coking rate equations, deactivation models

Deactivating catalysts rate equations

Deactivating catalysts rate from experiment

Deactivating rate constant

Deactivation kinetics rate coefficients

Deactivation kinetics rate constant

Deactivation kinetics rate equation

Deactivation rate constants

Deactivation rate, intrinsic

Deactivation rate, unimolecular reaction

Deactivation, nonradiative rates

Intrinsic deactivation rate constant

Observed deactivation rate constant

Rate constant of deactivation

Rate equation, catalytic deactivation

Rate of deactivation

Zeolites deactivation rates

© 2024 chempedia.info