Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines dioxide

It must be kept under an atmosphere of nitrogen or carbon dioxide it reduces, for example, Fe(III) to Fe(II) and nitro-organic compounds RNO2 to amines RNH2 (it may be used quantitatively to estimate nitro-compounds). In neutral solution, hydrolysis occurs to give species such as [Ti(0H)(H20)s], and with alkali an insoluble substance formulated as Ti203 aq is produced this is rapidly oxidised in air. [Pg.372]

Chill the concentrated solution of the amine hydrochloride in ice-water, and then cautiously with stirring add an excess of 20% aqueous sodium hydroxide solution to liberate the amine. Pour the mixture into a separating-funnel, and rinse out the flask or basin with ether into the funnel. Extract the mixture twice with ether (2 X25 ml.). Dry the united ether extracts over flake or powdered sodium hydroxide, preferably overnight. Distil the dry filtered extract from an apparatus similar to that used for the oxime when the ether has been removed, distil the amine slowly under water-pump pressure, using a capillary tube having a soda-lime guard - tube to ensure that only dry air free from carbon dioxide passes through the liquid. Collect the amine, b.p. 59-61°/12 mm. at atmospheric pressure it has b.p. 163-164°. Yield, 18 g. [Pg.226]

Both the primary amine (D) and the tertiary amine (E) are reasonably strong bases, and will absorb carbon dioxide if exposed to the air. They should therefore be stored in ground-glass stoppered bottles or in sealed tubes. [Pg.227]

The /-butoxycarbonyl group (Boc, "t-box ) has been eMens vely used in peptide synthesis, and Boc derivatives of many amino acids are commercially available. The customary reagent for the preparation from the amine is t-butyl azidoformate in water, dioxane/water, DMSO, or DMF. The cleavage by acids of medium strength proceeds with concomitant loss of isobutene and carbon dioxide (L.A. Carpino, 1957, 1973 see section 4.1.2.2). [Pg.163]

To illustrate the specific operations involved, the scheme below shows the first steps and the final detachment reaction of a peptide synthesis starting from the carboxyl terminal. N-Boc-glycine is attached to chloromethylated styrene-divinylbenzene copolymer resin. This polymer swells in organic solvents but is completely insoluble. ) Treatment with HCl in acetic acid removes the fert-butoxycarbonyl (Boc) group as isobutene and carbon dioxide. The resulting amine hydrochloride is neutralized with triethylamine in DMF. [Pg.232]

The reaction of a vinyl ether with carbon dioxide and a secondary amine gives a carbamic ester (246). [Pg.116]

Toxic or malodorous pollutants can be removed from industrial gas streams by reaction with hydrogen peroxide (174,175). Many Hquid-phase methods have been patented for the removal of NO gases (138,142,174,176—178), sulfur dioxide, reduced sulfur compounds, amines (154,171,172), and phenols (169). Other effluent treatments include the reduction of biological oxygen demand (BOD) and COD, color, odor (142,179,180), and chlorine concentration. [Pg.481]

A simpler nonphosgene process for the manufacture of isocyanates consists of the reaction of amines with carbon dioxide in the presence of an aprotic organic solvent and a nitrogeneous base. The corresponding ammonium carbamate is treated with a dehydrating agent. This concept has been apphed to the synthesis of aromatic and aUphatic isocyanates. The process rehes on the facile formation of amine—carbon dioxide salts using acid haUdes such as phosphoryl chloride [10025-87-3] and thionyl chloride [7719-09-7] (30). [Pg.448]

Industrially, polyurethane flexible foam manufacturers combine a version of the carbamate-forming reaction and the amine—isocyanate reaction to provide both density reduction and elastic modulus increases. The overall scheme involves the reaction of one mole of water with one mole of isocyanate to produce a carbamic acid intermediate. The carbamic acid intermediate spontaneously loses carbon dioxide to yield a primary amine which reacts with a second mole of isocyanate to yield a substituted urea. [Pg.452]

Carboxyhc acids react with aryl isocyanates, at elevated temperatures to yield anhydrides. The anhydrides subsequently evolve carbon dioxide to yield amines at elevated temperatures (70—72). The aromatic amines are further converted into amides by reaction with excess anhydride. Ortho diacids, such as phthahc acid [88-99-3J, react with aryl isocyanates to yield the corresponding A/-aryl phthalimides (73). Reactions with carboxyhc acids are irreversible and commercially used to prepare polyamides and polyimides, two classes of high performance polymers for high temperature appHcations where chemical resistance is important. Base catalysis is recommended to reduce the formation of substituted urea by-products (74). [Pg.452]

Monsanto has disclosed the use of carbon dioxide—amine complexes which are dehydrated, at low temperatures, with phosphoryl chloride [10025-87-3] or thionyl chloride [7719-09-7] as a viable route to a variety of aUphatic isocyanates. The process rehes on the facile formation of the intermediate salt (30).REPLACEVariations of this process, in which phosgene is used as a dehydrating agent, have been reported earlier (84). Table 2 Hsts commercially available aUphatic isocyanates. [Pg.456]

Water hydroly2es pure diketene only slowly to give acetoacetic acid [541-50-4] which quickly decomposes to acetone and carbon dioxide, but increasing the pH or adding catalysts (amines, palladium compounds) increases the rate of hydrolysis. The solvolysis of diketene in ammonia results in aceto acetamide [5977-14-0] if used in stoichiometric amounts (99), and P-arninocrotonarnide [15846-25-0] if used in excess (100). [Pg.478]

The reactions of primary amines and maleic anhydride yield amic acids that can be dehydrated to imides, polyimides (qv), or isoimides depending on the reaction conditions (35—37). However, these products require multistep processes. Pathways with favorable economics are difficult to achieve. Amines and pyridines decompose maleic anhydride, often ia a violent reaction. Carbon dioxide [124-38-9] is a typical end product for this exothermic reaction (38). [Pg.450]

The first-order decomposition rates of alkyl peroxycarbamates are strongly influenced by stmcture, eg, electron-donating substituents on nitrogen increase the rate of decomposition, and some substituents increase sensitivity to induced decomposition (20). Alkyl peroxycarbamates have been used to initiate vinyl monomer polymerizations and to cure mbbers (244). They Hberate iodine quantitatively from hydriodic acid solutions. Decomposition products include carbon dioxide, hydrazo and azo compounds, amines, imines, and O-alkyUiydroxylarnines. Many peroxycarbamates are stable at ca 20°C but decompose rapidly and sometimes violently above 80°C (20,44). [Pg.131]

Chemical Properties The formation of salts with acids is the most characteristic reaction of amines. Since the amines are soluble in organic solvents and the salts are usually not soluble, acidic products can be conveniendy separated by the reaction with an amine, the unshared electron pair on the amine nitrogen acting as proton acceptor. Amines are good nucleophiles reactions of amines at the nitrogen atom have as a first step the formation of a bond with the unshared electron pair of nitrogen, eg, reactions with acid anhydrides, haUdes, and esters, with carbon dioxide or carbon disulfide, and with isocyanic or isothiocyanic acid derivatives. [Pg.198]

Use of dry chemical, alcohol foam, or carbon dioxide is recommended for cycloahphatic amine fire fighting. Water spray is recommended only to flush spills away to prevent exposures. In the aquatic environment, cyclohexylamine has a high (420 mg/L) toxicity threshold for bacteria (Pseudomonasputida) (68), and is considered biodegradable, that is, rnineralizable to CO2 and H2O, by acclimatized bacteria. [Pg.212]

Cyclohexylamine is miscible with water, with which it forms an azeotrope (55.8% H2O) at 96.4°C, making it especially suitable for low pressure steam systems in which it acts as a protective film-former in addition to being a neutralizing amine. Nearly two-thirds of 1989 U.S. production of 5000 —6000 t/yr cyclohexylamine serviced this appHcation (69). Carbon dioxide corrosion is inhibited by deposition of nonwettable film on metal (70). In high pressure systems CHA is chemically more stable than morpholine [110-91-8] (71). A primary amine, CHA does not directiy generate nitrosamine upon nitrite exposure as does morpholine. CHA is used for corrosion inhibitor radiator alcohol solutions, also in paper- and metal-coating industries for moisture and oxidation protection. [Pg.212]

Water and carbon dioxide from the atmosphere can be absorbed by the amines to form hydrates and carbamates, from primary and secondary amines, respectively. [Pg.219]

Furalazine, Acetylfuratrizine, Panfuran-S. Heating nitrovin in butanol or dimethylformamide at 100—130°C affords furalazine, 6-[2-(5-nitro-2-furanyl)ethenyl]-l,2,4-triazine-3-amine (34). An improved synthesis originates with 5-nitro-2-furancarboxaldehyde and acetone, proceeds through 4-(5-nitro-2-furanyl)-3-buten-2-one followed by a selenium dioxide oxidation to the pymvaldehyde hydrate, and subsequent reaction with aininoguariidine (35). Furalazine, acetylfuratrizine (36), and the A[-A/-bis(hydroxymethyl) derivative, Panfuran-S, formed from the parent compound and formaldehyde (37), are systemic antibacterial agents. [Pg.461]

Direct ammonolysis involving dehydratioa catalysts is geaerahy ma at higher temperatures (300—500°C) and at about the same pressure as reductive ammonolysis. Many catalysts are active, including aluminas, siUca, titanium dioxide [13463-67-7], and aluminum phosphate [7784-30-7] (41—43). Yields are acceptable (>80%), and coking and nitrile formation are negligible. However, Htfle control is possible over the composition of the mixture of primary and secondary amines that can be obtained. [Pg.106]


See other pages where Amines dioxide is mentioned: [Pg.21]    [Pg.205]    [Pg.219]    [Pg.567]    [Pg.568]    [Pg.918]    [Pg.293]    [Pg.134]    [Pg.172]    [Pg.10]    [Pg.273]    [Pg.399]    [Pg.419]    [Pg.481]    [Pg.4]    [Pg.9]    [Pg.241]    [Pg.459]    [Pg.481]    [Pg.522]    [Pg.39]    [Pg.169]    [Pg.178]    [Pg.328]    [Pg.330]    [Pg.456]    [Pg.10]    [Pg.197]    [Pg.218]    [Pg.254]    [Pg.283]   
See also in sourсe #XX -- [ Pg.13 , Pg.228 ]




SEARCH



Aldehydes amine oxidations, manganese dioxide

Aliphatic amines reactions with chlorine dioxide

Amides amine oxidations, manganese dioxide

Amine carbon dioxide

Amine oxides 2,4-dioxides

Amine solutions, carbon dioxide

Amine solutions, carbon dioxide facilitated transport through

Amine solutions, carbon dioxide supported liquid membranes

Amines carbon dioxide elimination

Amines manganese dioxide

Amines reaction with carbon dioxide

Aqueous amine solutions, carbon dioxide

Aqueous amine solutions, carbon dioxide supported liquid membranes

Carbon dioxide amine conversion

Carbon dioxide amine strippers

Carbon dioxide recovery, amine solution

Carbon dioxide with amines

Carbon dioxide, addition amines

Carbon dioxide-amine reaction

Carbon dioxide-amine reaction mechanism

Chlorine dioxide amines

Secondary amines, reaction with carbon dioxide

© 2024 chempedia.info