Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitro compounds estimation

It must be kept under an atmosphere of nitrogen or carbon dioxide it reduces, for example, Fe(III) to Fe(II) and nitro-organic compounds RNO2 to amines RNH2 (it may be used quantitatively to estimate nitro-compounds). In neutral solution, hydrolysis occurs to give species such as [Ti(0H)(H20)s], and with alkali an insoluble substance formulated as Ti203 aq is produced this is rapidly oxidised in air. [Pg.372]

Analytical and Test Methods. o-Nitrotoluene can be analyzed for purity and isomer content by infrared spectroscopy with an accuracy of about 1%. -Nitrotoluene content can be estimated by the decomposition of the isomeric toluene diazonium chlorides because the ortho and meta isomers decompose more readily than the para isomer. A colorimetric method for determining the content of the various isomers is based on the color which forms when the mononitrotoluenes are dissolved in sulfuric acid (45). From the absorption of the sulfuric acid solution at 436 and 305 nm, the ortho and para isomer content can be deterrnined, and the meta isomer can be obtained by difference. However, this and other colorimetric methods are subject to possible interferences from other aromatic nitro compounds. A titrimetric method, based on the reduction of the nitro group with titanium(III) sulfate or chloride, can be used to determine mononitrotoluenes (32). Chromatographic methods, eg, gas chromatography or high pressure Hquid chromatography, are well suited for the deterrnination of mononitrotoluenes as well as its individual isomers. Freezing points are used commonly as indicators of purity of the various isomers. [Pg.70]

In order to estimate the enthalpies of formation of nitroso compounds from the corresponding amine or nitro compounds, we derive difference quantities 855 and 855. The nitroso/amino difference quantity < 55 (NO, NH2 R) is defined by... [Pg.360]

Chemical/Physical. Anticipated products from the reaction of 1,2-dichlorobenzene with ozone or OH radicals in the atmosphere are chlorinated phenols, ring cleavage products, and nitro compounds (Cupitt, 1980). Based on an assumed base-mediated 1% disappearance after 16 d at 85 °C and pH 9.70 (pH 11.26 at 25 °C), the hydrolysis half-life was estimated to be >900 yr (Ellington et al, 1988). [Pg.392]

It has been established experimentally (T. Urbanski, Kwiatkowski, Miladowski [22]) that the addition to pentaerythritol tetranitrate of such nitro compounds as nitrobenzene, nitrotoluene, dinitrobenzene, dinitrotoluene, trinitrobenzene, and trinitrotoluene, decreases its stability as determined by heating to 120-135°C. The degree of decomposition of PETN, heated alone or in mixtures, can be estimated in terms of the pH-values determining the acidity of the decomposition products (Table 32, Fig. 72). [Pg.181]

Wardman P, Dennis MF, Everett SA, Patel KB, Stratford MRL, Tracy M (2003) Radicals from one-electron reduction of nitro compounds, aromatic N-oxides and quinones the kinetic basis for hypoxia-selective, bioreductive drugs. Biochem Soc Symp 61 171-194 Warman JM, de Haas MP, Hummel A, van Lith D, VerberneJB, Loman H (1980) A pulse radiolysis conductivity study of frozen aqueous solutions of DNA. Int J Radiat Biol 38 459-459 Warman JM, de Haas MP, Rupprecht A (1996) DNA a molecular wire Chem Phys Lett 249 319-322 Warters RL, Lyons BW (1992) Variation in radiation-induced formation of DNA double-strand breaks as a function of chromatin structure. Radiat Res 130 309-318 Warters RL, Hofer KG, Harris CR, Smith JM (1977) Radionuclide toxicity in cultured mammalian cells Elucidation of the primary site of radiation damage. Curr Top Radiat Res Q 12 389-407 Weiland B, Huttermann J (1998) Free radicals from X-irradiated, dry and hydrated lyophilized DNA as studies by electron spin resonance spectroscopy analysis of spectral components between 77 K and room temperature. Int J Radiat Biol 74 341-358 Weinfeld M, Soderlind K-JM (1991) 32P-Postlabeling detection of radiation-induced DNA-damage identification and estimation of thymine glycols and phosphoglycolate termini. Biochemistry 30 1091-1097... [Pg.480]

A distinction must be made between chemical and physical stability. While physical stability is important, particularly in the evaluation of solid propellants, the chemical stability is of prime importance in the estimation of the course of decomposition of nitrate esters. The nitrate esters which are processed for use as propellants - unlike nitro compounds, which are relatively stable under these conditions - undergo a steady decomposition, which is due to imperfect purification of the starting materials and to the effect of other parameters such as temperature and air humidity. The rate of this decomposition is auto-catalyzed by the acidic decomposition products and may in certain cases produce spontaneous ignition. In order to reduce the decomposition rate as much as possible, suitable stabilizers are added to the powders, which are capable of accepting the acid cleavage products with formation of the corresponding nitro compounds (- Stabilizers). The stability is controlled by means of several tests (- Hot Storage Tests). [Pg.359]

If KSt values are not known, sometimes the potential explosibility of a dust cloud can still be estimated. Chemical groups such as organic peroxides and some nitro compounds are especially susceptible, as are materials containing significant quantities of oxygen readily available for combustion. With the following basic reaction... [Pg.178]

This is estimated from the fact that the p-nitro compound reacts 5—7 times faster at 20° than the p-methoxy compound at 25°... [Pg.40]

If the arsinic acid is sjmringly solutfie its sodium salt may be used, and with nitro-compounds tlie reaction is conducted in the cold to minimise rciduction of tlio nitro-group by the thiol-compound. The thioarsinites arc rccrystallised from hot water or dilute acetic acid, and may be estimated rajndly by direct titration with standard iodine solution ... [Pg.525]

The electron affinities of halogenated aromatic and aliphatic compounds and nitro compounds have been evaluated. Additional electron affinities for halogenated benzene, freons, heterocyclic compounds, dibenzofuran, and the chloro- and fluoroben-zenes are reported from ECD data. The first positive Ea for the fluorochloroethanes were obtained from published ECD data. The Ea of halogenated aromatic radicals have been estimated from NIMS data. The AEa of all the halobenzenes have been calculated using CURES-EC. The Ea of chlorinated biphenyls and chlorinated napthalenes obtained from reduction potentials have been revised based on variable solution energy differences. [Pg.293]

Knowledge of how aluminum chloride oxidizes aromatics to cation radicals is practically non-existent. At one time it seemed that a nitro compound was a necessary co-acceptor (Buck et al., 1960) and that, whereas with mononuclear alkylaromatics, the Lewis acid-nitro compound pair formed only charge transfer complexes (Brown and Grayson, 1953), complete electron transfer occurred with more easily oxidized aromatics. But, cation-radical formation from perylene, anthracene, and chrysene was found to occur in carbon disulfide, chloroform, and benzene solutions, too (Rooney and Pink, 1961) and even occurs on warming anthracene and naphthacene with solid aluminum chloride (Sato and Aoyama, 1973). There is no doubt that a nitro compound enhances electron transfer, however (Sullivan and Norman, 1972). Cation radical formation in AlCl3-nitromethane has been estimated as approximately 100% as compared with 1% in sulfuric acid oxidation of dialkoxybenzenes (Forbes and Sullivan, 1966). Unfortunately, aluminum halide salts have not been isolated and, therefore, even the beginnings of analytical data have yet to be collected. There is no definite knowledge of either the nature of the counter ion or the fate of the electrons in these cation-radical formations. [Pg.166]

Pepekin s study of the thermodynamic properties of difluoramino and nitro compounds [74,75] included many organic difluoramines besides the products of electrophilic difluoramination cited above. Properties reported include heats of combustion, formation, and atomization, Clausius-Clapeyron equation parameters, and the enthalpies and entropies of evaporation and sublimation. This collection of properties allowed estimation of group additivity parameters for general calculations of thermodynamic properties of organic difluoramines, which were compared to those of corresponding nitro groups. [Pg.143]


See other pages where Nitro compounds estimation is mentioned: [Pg.486]    [Pg.38]    [Pg.78]    [Pg.1197]    [Pg.66]    [Pg.92]    [Pg.487]    [Pg.527]    [Pg.30]    [Pg.75]    [Pg.122]    [Pg.143]    [Pg.66]    [Pg.455]    [Pg.506]    [Pg.506]    [Pg.520]    [Pg.439]    [Pg.444]    [Pg.72]    [Pg.319]    [Pg.85]    [Pg.520]    [Pg.38]    [Pg.95]    [Pg.151]    [Pg.145]    [Pg.318]   
See also in sourсe #XX -- [ Pg.486 ]




SEARCH



© 2024 chempedia.info