Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alloys deterioration

These alloys are of vital importance in the construction of modern aircraft and rockets. Aluminum, evaporated in a vacuum, forms a highly reflective coating for both visible light and radiant heat. These coatings soon form a thin layer of the protective oxide and do not deteriorate as do silver coatings. They are used to coat telescope mirrors and to make decorative paper, packages, toys. [Pg.32]

Wood is widely used as a stmctural material in the chemical industry because it is resistant to a large variety of chemicals. Its resistance to mild acids is far superior to that of steel but not as good as some of the more expensive acid-resistant alloys. Wood tanks used to store cold, dilute acid have a relatively long service life. However, increasing concentration or temperature causes the wood tank to deteriorate rapidly (6). [Pg.329]

Titanium and titanium alloy s. The possibility of deterioration of titanium and its alloys above 315°C (600°F). [Pg.948]

Vessels for high-temperature serviee may be beyond the temperature hmits of the stress tables in the ASME Codes. Sec tion TII, Division 1, makes provision for construction of pressure vessels up to 650°C (1200°F) for carbon and low-alloy steel and up to 815°C (1500°F) for stainless steels (300 series). If a vessel is required for temperatures above these values and above 103 kPa (15 Ibf/in"), it would be necessaiy, in a code state, to get permission from the state authorities to build it as a special project. Above 815°C (1500°F), even the 300 series stainless steels are weak, and creep rates increase rapidly. If the metal which resists the pressure operates at these temperatures, the vessel pressure and size will be limited. The vessel must also be expendable because its life will be short. Long exposure to high temperature may cause the metal to deteriorate and become brittle. Sometimes, however, economics favor this type of operation. [Pg.1028]

Corrosion resistance of stainless steel is reduced in deaerated solutions. This behavior is opposite to the behavior of iron, low-alloy steel, and most nonferrous metals in oxygenated waters. Stainless steels exhibit very low corrosion rates in oxidizing media until the solution oxidizing power becomes great enough to breach the protective oxide locally. The solution pH alone does not control attack (see Chap. 4, Underdeposit Corrosion ). The presence of chloride and other strong depassivating chemicals deteriorates corrosion resistance. [Pg.103]

Corrosion is described as hot corrosion and sulfidation processes. Hot corrosion is an accelerated oxidation of alloys caused by the deposition of Na2S04. Oxidation results from the ingestion of salts in the engine and sulfur from the combustion of fuel. Sulfidation corrosion is considered a form of hot corrosion in which the residue that contains alkaline sulfates. Corrosion causes deterioration of blade materials and reduces component life. [Pg.418]

The corrosion resistance of low-alloy steels is not significantly better than that of mild steel for aqueous solutions of acids, salts, etc. The addition of 0.5% copper forms a rust-colored film preventing further steel deterioration small amounts of chromium (1%) and nickel (0.5%) increase the rust... [Pg.64]

For many years hydrogen was considered as a deleterious impurity which deteriorates mechanical properties of materials. This is clearly illustrated by hydrogen embrittlement of ferrous metals and alloys. The main effort of the research was aimed therefore at the study of hydrogen embrittlement and at the ways to avoid it. ... [Pg.425]

In the case of non-metallic materials, the term corrosion invariably refers to their-deterioration from chemical causes, but a similar concept is not necessarily applicable to metals. Many authorities consider that the term metallic corrosion embraces all interactions of a metal or alloy (solid or liquid) with its environment, irrespective of whether this is deliberate and beneficial or adventitious and deleterious. Thus this definition of corrosion, which for convenience will be referred to as the transformation definition. [Pg.4]

On the other hand, corrosion has been defined as the undesirable deterioration of a metal or alloy, i.e. an interaction of the metal with its environment that adversely affects those properties of the metal that are to be preserved. This definition —which will be referred to as the deterioration definition —is also applicable to non-metallic materials such as glass, concrete, etc. and embodies the concept that corrosion is always deleterious. However, the restriction of the definition to undesirable chemical reactions of a metal results in anomalies which will become apparent from a consideration of the following examples. [Pg.5]

Indoors, aluminium retains its appearance well, and even after prolonged periods may show no more than slight dulling or on aluminium-magnesium alloys a slight bloom. This superficial deterioration can be accelerated by the presence of moist conditions and condensation which in extreme cases may lead to staining. [Pg.666]

There are no significant high-temperature applications for alloys of nickel with iron. The scales formed in air consist of nickel oxide and iron oxide and the latter is usually present in the form of the spinel, NiO-FejOj . In the case of the more dilute nickel alloys, internal oxidation of nickel was Observed S. Substitution of a substantial proportion of nickel by iron results in a deterioration in the oxidation resistance of nickel-chromium... [Pg.1052]

Oil-base (including oil-modified alkyd resin) paint films should not be used in alkaline environments as the paint will deteriorate owing to saponification alkali-resistant coatings are provided by some cellulose ethers, e.g. ethyl cellulose, certain polyurethane, chlorinated rubber, epoxy, p.v.c./ p.v.a. copolymer, or acrylic-resin-based paints. In particular, aluminium and its alloys should be protected by alkali-resistant coatings owing to the detrimental effects of alkali on these metals. [Pg.612]

An ideal method for removing corrosion products would be one that would remove them completely without causing any further corrosion or other deterioration of a test specimen in the process. Procedures that achieve this ideal or approach it very closely have been developed for many of the common alloys. Steels, for example, have been cleaned in such a manner that the loss due to cleaning is about 0 01%. [Pg.991]

Deterioration of electrode performance due to corrosion of electrode components is a critical problem. The susceptibility of MHt electrodes to corrosion is essentially determined by two factors surface passivation due to the presence of surface oxides or hydroxides, and the molar volume of hydrogen, VH, in the hydride phase. As pointed out by Willems and Buschow [40], VH is important since it governs alloy expansion and contraction during the charge-discharge cycle. Large volume changes... [Pg.217]

Materials of Construction MIC processes are those processes by which manufactured materials deteriorate through the presence and activities of microbes. These processes can be either direct or indirect. Microbial biodeterioration of a great many materials (including concretes, glasses, metals and their alloys, and plastics) occurs by diverse mechanisms and usually involves a complex community consisting of many different species of microbes. [Pg.8]

Velocity Most metals and alloys are protected from corrosion, not by nobility [a metal s inherent resistance to enter into an electrochemical reaction with that environment, e.g., the (intrinsic) inertness of gold to (almost) everything but aqua regia], but by the formation of a protective film on the surface. In the examples of film-forming protective cases, the film has similar, but more limiting, specific assignment of that exemplaiy-type resistance to the exposed environment (not nearly so broad-based as noted in the case of gold). Velocity-accelerated corrosion is the accelerated or increased rate of deterioration or attack on a metal surface because of relative movement between a corrosive fluid and the metal surface, i.e., the instability (velocity sensitivity) of that protective film. [Pg.9]

FIGURE 39 Corrosion. Corrosion is the process of gradual deterioration of metals and alloys as a result of their interaction with the environment. The corrosion process is a reversal of metallurgical processes, whereby metals are recovered from the minerals in which they occur in nature (a). It is an electrolytic process, brought about by the passage of electric currents. Any metal or alloy contains sites in which there are slight local compositional differences. When such compositional differences are exposed to a humid or wet environment, extremely small electrolytic cells as the one shown in (b) are created in each cell, an electric current drives the otherwise nonspontaneous corrosion reactions. In a surface undergoing corrosion there are millions of electrolytic cells. [Pg.215]


See other pages where Alloys deterioration is mentioned: [Pg.367]    [Pg.481]    [Pg.81]    [Pg.81]    [Pg.367]    [Pg.481]    [Pg.81]    [Pg.81]    [Pg.112]    [Pg.124]    [Pg.122]    [Pg.36]    [Pg.241]    [Pg.946]    [Pg.358]    [Pg.139]    [Pg.238]    [Pg.262]    [Pg.14]    [Pg.4]    [Pg.515]    [Pg.689]    [Pg.689]    [Pg.747]    [Pg.748]    [Pg.753]    [Pg.756]    [Pg.687]    [Pg.42]    [Pg.214]    [Pg.608]    [Pg.959]    [Pg.213]    [Pg.220]    [Pg.222]   
See also in sourсe #XX -- [ Pg.188 , Pg.189 , Pg.190 , Pg.191 , Pg.192 , Pg.193 , Pg.194 , Pg.195 , Pg.196 , Pg.197 ]

See also in sourсe #XX -- [ Pg.188 , Pg.189 , Pg.190 , Pg.191 , Pg.192 , Pg.193 , Pg.194 , Pg.195 , Pg.196 , Pg.197 ]




SEARCH



Deterioration

© 2024 chempedia.info