Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation solutions

Acetaldehyde (and other aldehydes containing at least one hydrogen atom in the a position) when treated with a small quantity of dilute sodium hydr oxide solution or other basic catalyst gives a good yield of aldol (p hydroxy-n-but3Taldehyde) (I), which readily loses water, either by heating the isolated aldol alone or with a trace of mineral acid, to form crotonaldehyde (II) ... [Pg.351]

Dissolve 65 g. of hydrazine sulphate in 400 ml. of 2 5. V sodium liyd i oxide solution contained in a 1-htre three-necked flask, equipped with a thermometer, mechanical stirrer and dropping funnel. Immerse the flask in an ice bath and when the temperature reaches 15° (some sodium sulphate... [Pg.842]

Aqueous poly(ethylene oxide) solutions of higher molecular weight (ca 10 ) become stringy at polymer concentrations less than 1 wt %. At concentrations of 20 wt %, solutions become nontacky elastic gels above this concentration, the solutions appear to be hard, tough, water-plasticized polymers. [Pg.338]

These association reactions can be controlled. Acetone or acetonylacetone added to the solution of the polymeric electron acceptor prevents insolubilization, which takes place immediately upon the removal of the ketone. A second method of insolubiUzation control consists of blocking the carboxyl groups with inorganic cations, ie, the formation of the sodium or ammonium salt of poly(acryhc acid). Mixtures of poly(ethylene oxide) solutions with solutions of such salts can be precipitated by acidification. [Pg.342]

Wetting times of /V,/V-dimethy1-/ -alkyl amine oxides as a function of the alkyl chain length show a minimum with dimethyl dodecyl amine oxide (Table 3). Foam generation of dimethyl-/ -alkylamine oxides solutions show a maximum when the alkyl group contains 14 carbons. [Pg.189]

Silver nitrate forms colorless, rhombic crystals. It is dimorphic and changes to the hexagonal rhombohedral form at 159.8°C. It melts at 212°C to a yellowish Hquid which solidifies to a white, crystalline mass on cooling. An alchemical name, lunar caustic, is stiU appHed to this fused salt. In the presence of a trace of nitric acid, silver nitrate is stable to 350°C. It decomposes at 440°C to metallic silver, nitrogen, and nitrogen oxides. Solutions of silver nitrate are usually acidic, having a pH of 3.6—4.6. Silver nitrate is soluble in ethanol and acetone. [Pg.89]

The pH of the chlorine dioxide reaction mixture must be maintained in the 2.8—3.2 pH range, otherwise decreased conversion yields of chlorite to chlorine dioxide are obtained with by-product formation of chlorate. Generator efficiencies of 93% and higher have been demonstrated. A disadvantage of this system is the limited storage life of the sodium hypochlorite oxidant solution. [Pg.487]

Cork compositions 250 Low cost. Truly compressible materials which permit substantial deflections with negligible side flow. Conform well to irregular surfaces. High resistance to oils good resistance to water, many chemicals. Should not be used with inorganic acids, alkalies, oxidizing solutions, live steam. [Pg.2474]

A) -Naphthoquinone.—For the best results this preparation must be carried out rapidly. The vessels and reagents required should be made ready in advance. The oxidizing solution is prepared by dissolving 240 g. (0.89 mole) of ferric chloride hexahydrate in a mixture of go cc. of concentrated hydrochloric acid and 200 cc. of water with heating, cooling to room temperature by the addition of 200-300 g. of ice, and filtering the solution by suction. [Pg.68]

The biphenol polyesters, being considerably more expensive than isophtha-leics, have better chemical resistance to strong alkaline solutions and oxidizing solutions. For about the same price as the biphenols, the... [Pg.120]

Oxidized solution is delivered from the pumping tank to the top of the absorber tower, where it contacts the gas stream in a counter-current flow. The reduced solution flows from the contactor to the solution flash drum. Hydrocarbon gases that have been dissolved in the solution are flashed and the solution flows to the base of the oxidizer vessel. Air is blown into the oxidizer, and the solution, now re-oxidized, flows to the pumping tank. [Pg.176]

A 250-ml three-necked flask is equipped with a dropping funnel, a thermometer, and a mechanical stirrer, and is charged with a solution of 22 g (0.10 mole) of 4-benzoyl-oxycyclohexanol (Chapter 7, Section X) in 40 ml of acetic acid. The solution is cooled in a water bath, and the oxidizing solution is added at a rate so as to maintain the reaction temperature below 35°. After completion of the addition, the reaction mixture is allowed to stand at room temperature overnight. The mixture is extracted with 150 ml of ether, and the ethereal solution is washed four times with 100-ml portions of water to remove the bulk of the acetic acid. The ethereal solution is then washed with sodium bicarbonate solution followed by water and then dried over sodium sulfate. The ether is evaporated, and the residue solidifies. The product keto ester may be recrystallized from ether-p>etroleum ether giving plates, mp 62-63°. The yield is about 18 g (82 %). [Pg.4]

A 5% solution of chromium trioxide-pyridine complex in dry methylene chloride is prepared. The alcohol (0.01 mole) is dissolved in dry methylene chloride and is added in one portion to the magnetically stirred oxidizing solution (310 ml, a 6 1 mole ratio) at room temperature. The oxidation is complete in 5-15 minutes as indicated by the precipitation of the brownish black chromium reduction products. The mixture is filtered and the solvent is removed (rotary evaporator) leaving the crude product, which may be purified by distillation or recrystallization. Examples are given in Table 1.1. [Pg.5]

One milliliter each of the borneol solution and the oxidizing solution are mixed in a test tube and briefly shaken. A TLC slide is spotted with the borneol solution, the camphor solution, and the ether layer of the reaction mixture. Spotting is done by means of a capillary melting point tube used as a dropper and filled with a 5 mm sample. The slide is developed in a wide-mouth jar containing a filter paper liner and a few milliliters of chloroform (Fig. A3.20). After development (the solvent front rises to within 1 cm of the top), the slide is removed, the solvent is allowed to evaporate, and the slide is placed in a covered wide-mouth jar containing a few crystals of iodine. The spots readily become visible and the progress of the reaction can easily be followed. With periodic shaking, the oxidation is complete in about 30 minutes. [Pg.187]

A mechanism such as that given above provides explanations for the known effects of many process variables ". The reductive dissolution and undermining processes require access of the acid to the metal surface, hence the benefits obtained by the deliberate introduction of cracks in the oxide by cold-working prior to pickling. Also the increase in pickling rate with agitation or strip velocity can be explained in terms of the avoidance of acid depletion at the oxide-solution interface. [Pg.298]

The corrosion current due to diffusion of metal ions through the passivating film, and dissolution of metal ions at the oxide-solution interface. Clearly, the smaller this current, the more protective is the oxide layer. [Pg.814]

The spent oxidizing solution requires the addition of a reducing agent before it can be discharged to sewer or waste treatment plant. [Pg.644]

The addition of chromium forms a family of Ni-Cr-Mo alloys such as Hastelloy alloys C-276, C-22, and C-2000. These alloys contain 16 to 22 percent chromium and 13 to 16 percent molybdenum and are very resistant to a wide variety of chemical environments. They are considered resistant to stress-corrosion cracking and very resistant to localized corrosion in chloride-containing environments. These alloys are resistant to strong oxidizing solutions, such as wet chlorine and hypochlorite solutions. They are among only a few alloys that are completely resistant to seawater. The carbon contents are low enough that weld sensitization is not a problem during fabrication. These alloys are also more difficult to machine than stainless steel, but fabrication is essentially the same. [Pg.33]


See other pages where Oxidation solutions is mentioned: [Pg.260]    [Pg.331]    [Pg.67]    [Pg.340]    [Pg.344]    [Pg.195]    [Pg.348]    [Pg.303]    [Pg.135]    [Pg.68]    [Pg.58]    [Pg.252]    [Pg.59]    [Pg.1273]    [Pg.4]    [Pg.67]    [Pg.519]    [Pg.1268]    [Pg.1189]    [Pg.402]    [Pg.431]    [Pg.176]    [Pg.21]    [Pg.392]    [Pg.471]    [Pg.533]    [Pg.27]    [Pg.509]    [Pg.517]    [Pg.521]    [Pg.58]    [Pg.238]    [Pg.198]   
See also in sourсe #XX -- [ Pg.51 , Pg.308 ]




SEARCH



Oxidizing solutions

© 2024 chempedia.info