Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkaline sodium salts

Crystals, mp 160 - ] 6 ]e. fnso] in water- Forms an alkaline sodium salt which is sol in water, alcohol. [Pg.937]

While alkaline sodium salts such as silicate, phosphate, and carbonate attack copper alloys at low rates, alkaline cyanide is aggressive and attacks copper alloys fairly rapidly because of the formation of the soluble complex copper cyanide anion Cu(CN)2. ... [Pg.569]

A simpler way to determine the water bonding beyond a certain concentration is to measure the conductivity of the silicate solutions as a function of concentration. Figure 11 is expressive, showing a rise in conductivity as a function of concentration up to about 25% dry extract, which is conventional for alkaline sodium salts, and then a sharp drop in conductivity after this value, which is less common. This drop in conductivity indicates a considerable loss of water mobility in this kind of solution. This particular property of silicate solutions makes it possible to conceive unexpected combinations in liquid formulations. Whereas it is quite difficult, for instance, to get smooth mixtures of silicate and surfactants because there is not enough water available to solvate the surfactants, original emulsions can be obtained in these silicate solutions. [Pg.551]

Aquatech Systems, a business unit of Allied-Signal, Inc., has patented the SOXAL process, which is a process for regenerating the spent scrubbing solution of an alkaline sodium salt scrubber using electrodialysis cell stacks (electrolytic cells with ion-selective membranes) (Byszewski and Hurwitz, 1991). [Pg.560]

C (decomp.) It is made by the oxidation of toluene-o-sulphonamide with alkaline permanganate. Saccharin has about 550 times the sweetening power of sucrose, and is used extensively as a sweetening agent, usually in the form of the sodium salt. The use of saccharin is restricted in the U.S. [Pg.350]

Note. For a very weak acid, the ammonium salt of which may dissociate rapidly on heating, conversion into the sodium salt rs recommended. Place o-1 g. of the acid in a boiling-tube and add NaOH solution until the mixture is just alkaline to litmus-paper. Add dil. HNO3 until just acid and then a slight excess of ammonia until again just alkaline. Add a piece of unglazed porcelain, and boil until the odour of ammonia is removed, and then cool. [Pg.332]

Example. Dissolve 0 3 g. of benzoic acid in a minimum of hot water (about 70 ml.) and add 5% aqueous sodium hydro.xide until the solution is just alkaline to methyl-orange, then add i drop of dilute hydrochloric acid. Pour this solution of the sodium salt into a solution of 0 5 g, of benzylthiouronium chloride in 5 ml. of water, and cool the stirred mixture in ice-water. Filter off the benzylthiouronium salt which has separated, and recrystallise from ethanol con taining 10% of water cream-coloured cr> stals, m.p. i66 . (M.ps., pp. 543 545.)... [Pg.349]

Treatment of phenyl esters, (See also p. 248.) The alkaline solu tion containing phenoxide and the sodium salt of the acid should now be worked up by the following method. [Pg.357]

C) Phenacyl and p-Bromophenacyl esters. Ammonium salts in aqueous-ethanolic solution do not however usually condense satisfactorily with phenacyl and />-bromophenacyl bromide. The aqueous solution of the ammonium salt should therefore be boiled with a slight excess of sodium hydroxide to remove ammonia, and the solution then cooled, treated with hydrochloric acid until just alkaline to phenol-phthalein, and then evaporated to dryness. The sodium salt is then treated as described (p. 349) to give the ester. Filter the ester, and wash with water to remove senium halide before recrystallisation. [Pg.360]

The normal form A can pass by tautomeric change under the influence of alkali into the acidic hydroxy form B, which in turn can 3deld the sodium salt C. Nitroparaffins are therrfore pseudo-acids, and are soluble in alkaline solution. [Pg.303]

Dissolve (or suspend) 0-25 g. of the acid in 5 ml. of warm water, add a drop or two of phenolphthalein indicator and neutralise carefully with ca. N sodium hydroxide solution. Then add 2-3 drops of ca. O lN hydrochloric acid to ensure that the solution is almost neutral (pale pink colour). (Under alkaline conditions the reagent tends to decompose to produce the evil-smelling benzyl mercaptan.) If the sodium salt is available, dissolve 0-25 g. in 5 ml. of water, and add 2 drops of ca. 0 -hydrochloric acid. Introduce a solution of 1 g. of S-benzyl-iso-thiuro-nium chloride in 5 ml. of water, and cool in ice until precipitation is Dibasic and tribasic acids will require 0-01 and 0-015 mol respectively. [Pg.363]

It is frequently advisable in the routine examination of an ester, and before any derivatives are considered, to determine the saponification equivalent of the ester. In order to ensure that complete hydrolysis takes place in a comparatively short time, the quantitative saponi fication is conducted with a standardised alcoholic solution of caustic alkali—preferably potassium hydroxide since the potassium salts of organic acids are usuaUy more soluble than the sodium salts. A knowledge of the b.p. and the saponification equivalent of the unknown ester would provide the basis for a fairly accurate approximation of the size of the ester molecule. It must, however, be borne in mind that certain structures may effect the values of the equivalent thus aliphatic halo genated esters may consume alkali because of hydrolysis of part of the halogen during the determination, nitro esters may be reduced by the alkaline hydrolysis medium, etc. [Pg.392]

Amino acids react in alkaline solution with a-naphthyl isocyanate to yield the sodium salts of the corresponding a-naphthylureido acids, which remain in solution upon addition of a mineral acid, the ureido acid is precipitated. [Pg.437]

The solution will then contain the free acid and the hydrochloride of the base either of these may separate if sparingly soluble. If a sohd crystallises from the cold solution, filter, test with sodium bicarbonate solution compare Section 111,85, (i) and compare the m.p. with that of the original compound. If it is a hydrolysis product, examine it separately. Otherwise, render the filtrate alkahne with sodium hydroxide solution and extract the base with ether if the presence of the unchanged acyl canpound is suspected, extract the base with weak acid. Identify the base in the usual manner (see Section IV, 100). The acid will be present as the sodium salt in the alkaline extract and may be identified as described in Section IV,175. [Pg.801]

Saccharin (imide of o-sulphobenzoic acid). Upon oxidising o toluene-sulphonamide with potassium permanganate in alkaline solution, the sodium salt of o-sulphonamidobenzoic acid is formed, which upon acidifying with concentrated hydrochloric acid or warming passes spontaneously into the cyclic imide of o-sulphobenzoic acid or saccharin ... [Pg.821]

Hydrolysis of a sulphonamide. Mix 2 g. of the sulphonamide with 3-5 ml. of 80 per cent, sulphuric acid in a test-tube and place a thermometer in the mixture. Heat the test-tube, with frequent stirring by means of the thermometer, at 155-165° until the solid passes into solution (2-5 minutes). Allow the acid solution to cool and pour it into 25-30 ml. of water. Render the resulting solution alkaline with 20 per cent, sodium hydroxide solution in order to liberate the free amine. Two methods may be used for isolating the base. If the amine is volatile in steam, distil the alkaline solution and collect about 20 ml. of distillate extract the amine with ether, dry the ethereal solution with anhydrous potassium carbonate and distil off the solvent. If the amine is not appreciably steam-volatile, extract it from the alkaline solution with ether. The sulphonic acid (as sodium salt) in the residual solution may be identified as detailed under 13. [Pg.1077]

Potassium acetate, mbidium acetate, and cesium acetate are very soluble ia anhydride ia contrast to the only slightly soluble sodium salt. Barium forms the only soluble alkaline earth acetate. Heavy metal acetates are poorly soluble. [Pg.75]

Aqueous solutions of caustic soda aie highly alkaline. Hence caustic soda is ptimatily used in neutralization reactions to form sodium salts (79). Sodium hydroxide reacts with amphotoric metals (Al, Zn, Sn) and their oxides to form complex anions such as AlO, ZnO. SnO ", and (or H2O with oxides). Reaction of AI2O2 with NaOH is the primary step during the extraction of alumina from bauxite (see Aluminum compounds) ... [Pg.514]

Alkali Meta.IPhospha.tes, A significant proportion of the phosphoric acid consumed in the manufacture of industrial, food, and pharmaceutical phosphates in the United States is used for the production of sodium salts. Alkali metal orthophosphates generally exhibit congment solubility and are therefore usually manufactured by either crystallisation from solution or drying of the entire reaction mass. Alkaline-earth and other phosphate salts of polyvalent cations typically exhibit incongment solubility and are prepared either by precipitation from solution having a metal oxide/P20 ratio considerably lower than that of the product, or by drying a solution or slurry with the proper metal oxide/P20 ratio. [Pg.341]

Excess calcium hydroxide is precipitated by usiag carbon dioxide and the calcium carbonate, calcium hydroxide, and calcium phosphite are removed by filtration. The filtered solution is treated with an equivalent amount of sodium sulfate or sodium carbonate to precipitate calcium sulfate or carbonate. Sodium hypophosphite monohydrate [10039-56-2] is recovered upon concentration of the solution. Phosphinic acid is produced from the sodium salt by ion exchange (qv). The acid is sold as a 50 wt %, 30—32 wt %, or 10 wt % solution. The 30—32 wt % solution is sold as USP grade (Table 12) (63). Phosphinic acid and its salts are strong reduciag agents, especially ia alkaline solution (65). [Pg.375]

R)-Pantothenic acid (1) contains two subunits, (R)-pantoic acid and P-alanine. The chemical abstract name is A/-(2,4-dihydroxy-3,3-dimethyl-l-oxobutyl)-P-alanine (11). Only (R)-pantothenic acid is biologically active. Pantothenic acid is unstable under alkaline or acidic conditions, but is stable under neutral conditions. Pantothenic acid is extremely hygroscopic, and there are stabiUty problems associated with the sodium salt of pantothenic acid. The major commercial source of this vitamin is thus the stable calcium salt (3) (calcium pantothenate). [Pg.56]

Oxidation of Aromatic Amines. The technically important dye Direct Yellow 28 (23) [10114-47-3] (Cl 19555) for cotton usage is manufactured by oxidation of dehydrothio- i ra-toluidinesulfonic acid sodium salt with sodium hypochlorite ia aqueous alkaline solutioa. [Pg.429]

Miscellaneous Derivatives. Fimehc acid is used as an intermediate in some pharmaceuticals and in aroma chemicals ethylene brassylate is a synthetic musk (114). Salts of the diacids have shown utUity as surfactants and as corrosion inhibitors. The alkaline, ammonium, or organoamine salts of glutaric acid (115) or C-5—C-16 diacids (116) are useflil as noncorrosive components for antifreeze formulations, as are methylene azelaic acid and its alkah metal salt (117). Salts derived from C-21 diacids are used primarily as surfactants and find apphcation in detergents, fabric softeners, metal working fluids, and lubricants (118). The salts of the unsaturated C-20 diacid also exhibit anticorrosion properties, and the sodium salts of the branched C-20 diacids have the abUity to complex heavy metals from dilute aqueous solutions (88). [Pg.64]

I-Cyano-3-phenylurea, first obtained by the alkaline hydrolysis of 5-anilino-3- -toluyl-l,2,4-oxadiazole, has been prepared by tlic condensation of phenyl isocyanate and the sodium salt of cyanamide. However, in these publications an incorrect structural assignment for the product was made. 1-Cyano-3-phenyl-urea is obtained also, together with other products, by warming gently l-cyano-3-phenylthiourea with caustic soda in the presence of ethylene chlorohydrin, or by gradually adding caustic )otash to a boiling solution of 1-phenyldithiobiuret and ethylene clilorohydrin in ethanol. ... [Pg.11]


See other pages where Alkaline sodium salts is mentioned: [Pg.31]    [Pg.116]    [Pg.183]    [Pg.43]    [Pg.488]    [Pg.490]    [Pg.31]    [Pg.116]    [Pg.183]    [Pg.43]    [Pg.488]    [Pg.490]    [Pg.99]    [Pg.221]    [Pg.359]    [Pg.445]    [Pg.615]    [Pg.638]    [Pg.758]    [Pg.348]    [Pg.25]    [Pg.176]    [Pg.66]    [Pg.420]    [Pg.329]    [Pg.490]    [Pg.54]    [Pg.150]    [Pg.130]    [Pg.364]    [Pg.422]    [Pg.13]   
See also in sourсe #XX -- [ Pg.43 ]




SEARCH



© 2024 chempedia.info