Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols from carboxylic acid derivatives

The great diversity of terpenes helps to cormteract tolerance by herbivores. In all, terpenes are not very toxic to vertebrates. Many mammals ingest a significant amount of terpenoids with their diet. Monoterpenes from pine oil added to the diet reduces food intake in red deer, Cervuselaphus, calves (Elliot and Loudon, 1987). The brush-tailed possmn, Trichosurus vulpecula, detoxifies (-l-)-a-pinene to alcohol and carboxylic acid derivatives. [Pg.275]

Figure 1. Synthesis of oxazolines from /1-amino alcohols and carboxylic acid derivatives. Figure 1. Synthesis of oxazolines from /1-amino alcohols and carboxylic acid derivatives.
Carbonylation reaction offers the production of more functionalized products starting from readily available feedstocks. The process represents industrial core technologies for converting various bulk chemicals such as olefins to aldehydes, alcohols and carboxylic acid derivatives. Advancement in the synthesis and knowledge of various metal carbonyls give access to various new kinds of carbonylation reactions and help in functionalization of various substrates which are otherwise difficult to synthesize. Various types of carbonylation reactions are summarized in Table 10.2. [Pg.358]

The cinnamyl ester can be prepared from an activated carboxylic acid derivative and cinnamyl alcohol it is cleaved under nearly neutral conditions [Hg(OAc)2, MeOH, 23°, 2-4 h KSCN, H2O, 23°, 12-16 h, 90% yield]. [Pg.249]

Solid esters are easily crystallisable materials. It is important to note that esters of alcohols must be recrystallised either from non-hydroxylic solvents (e.g. toluene) or from the alcohol from which the ester is derived. Thus methyl esters should be crystallised from methanol or methanol/toluene, but not from ethanol, n-butanol or other alcohols, in order to avoid alcohol exchange and contamination of the ester with a second ester. Useful solvents for crystallisation are the corresponding alcohols or aqueous alcohols, toluene, toluene/petroleum ether, and chloroform (ethanol-free)/toluene. Esters of carboxylic acid derived from phenols... [Pg.64]

Another example of the effect of resonance is in the relative acidity of carboxylic acids as compared to alcohols. Carboxylic acids derived from saturated hydrocarbons have ipK values near 5, whereas saturated alcohols have pA values in the range 16-18. This implies that the carboxylate anion can accept negative charge more readily than an oxygen on a saturated carbon chain. This can be explained in terms of stabilization of the negative charge by resonance, ... [Pg.10]

The cinnamyl ester can be prepared from an activated carboxylic acid derivative and cinnamyl alcohol or by transesterification with cinnamyl alcohol in the presence of the H-Beta Zeolite (toluene, reflux, 8 h, 59-96% yield). It is cleaved under nearly neutral conditions [Hg(OAc)2, MeOH, 23°, 2-A h KSCN, H2O, 23°, 12-16 h, 90% yield]or by treatment with Sulfated-Sn02, toluene, anisole, reflux. The latter conditions also cleave crotyl and prenyl esters. [Pg.411]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

A slurry of 2 (0.1 M) in 4 M hydrochloric acid is heated at reflux for 16 hr. The solution is concentrated to dryness by rotary evaporation and the crude carboxylic acid, derived from 2, is recrystallized from hexane-ethyl acetate-isopropyl alcohol (2 1 1) furnishing pure material in 80% yield, mp 196-1D7°C. [Pg.193]

Now we see an analogy with the LAH reduction sequence (see Section 7.11), in that this ketone intermediate also reacts with the organometallic reagent, rather more readily than the initial carboxylic acid derivative, so that this ketone cannot usually be isolated. The final product is thus a tertiary alcohol, which contains two alkyl or aryl groups from the organometallic reagent. [Pg.272]

Very important compounds are the carboxylic acids and their derivatives, which can be formally obtained by exchanging the OH group for another group. In fact, derivatives of this type are formed by nucleophilic substitutions of activated intermediate compounds and the release of water (see p. 14). Carboxylic acid esters (R-O-CO-R ) arise from carboxylic acids and alcohols. This group includes the fats, for example (see p.48). Similarly, a carboxylic acid and a thiol yield a thioester (R-S-CO-R ). Thioesters play an extremely important role in carboxylic acid metabolism. The best-known compound of this type is acetyl-coenzyme A (see p. 12). [Pg.10]

There are several examples of dehydrations of chemicals derived by renewable resources by use of heteregeneous catalytic approaches in the literature. These can be categorized into three types of reactions (a) reactions in which one (or more) molecule(s) of water is eliminated from a single substrate molecule, (b) reactions in which one (or more) molecule(s) of water is generated as the result of an esterification reaction between an alcohol and a carboxylic acid or carboxylic acid derivative and (c) reactions in which one (or more) molecule(s) of water is generated due to an etherification reaction between two alcohol functionalities. [Pg.24]

The presence of highly electronegative atoms which can participate in hydrogen bonding is required for the solubility of polymers in water. Such groups include amines, imines, ethers, alcohols, sulfates, carboxylic acids and associated salts, and, to a lesser extent, thiols. The water solubility is also affected by pH and the formation of charged species. Thus the copolymer derived from vinylamine and vinyl sulfonate is not soluble in water, whereas the corresponding sodium salt of this copolymer is water-soluble. [Pg.205]

The most important reactions of carboxylic acids are the conversions to various carboxylic acid derivatives, e.g. acid chlorides, acid anhydrides and esters. Esters are prepared by the reaction of carboxylic acids and alcohols. The reaction is acid catalysed and is known as Fischer esterification (see Section 5.5.5). Acid chlorides are obtained from carboxylic acids by the treatment of thionyl chloride (SOCI2) or oxalyl chloride [(COCl)2], and acid anhydrides are produced from two carboxylic acids. A summary of the conversion of carboxylic acid is presented here. All these conversions involve nucleophilic acyl substitutions (see Section 5.5.5). [Pg.93]

Flexible aliphatic compounds are also selectively fluorinated. Such substrates may be alkanes, alcohols, carboxylic acid derivatives or ketones as long as the electron-withdrawing group is far enough from the reacting center (Table 2).44 There are differences in yields and reaction rates which are qualitatively easily understood and are directly related to the electron density of the reactive C —H bond. [Pg.174]

The esterification of support-bound carboxylic acids has not been investigated as thoroughly as the esterification of support-bound alcohols. Resin-bound activated acid derivatives that are well suited to the preparation of esters include O-acylisoureas (formed from acids and carbodiimides), acyl halides [23,226-228], and mixed anhydrides (Table 13.15). A-Acylurea formation does not compete with esterifications as efficiently as it does with the formation of amides from support-bound acids. Esters can also be prepared from carboxylic acids on insoluble supports by acid-catalyzed esterification [152,229]. Alternatively, support-bound carboxylic acids can be esteri-fied by O-alkylation, either with primary or secondary aliphatic alcohols under Mitsu-nobu conditions or with reactive alkyl halides or sulfonates (Table 13.15). [Pg.353]

Organomanganese(II) iodides, 210 Organotin reagents, 211 Organovanadium reagents, 219 From carboxylic acids Benzylchlorobis(triphenylphos-phine)palladium(II), 30 From other acyl derivatives Lithium o-lithiophenoxide, 166 Organomanganese(II) iodides, 210 From 1,2-diols or 1,2-amino alcohols Diethoxy triphenylphosphorane, 109... [Pg.393]

Furan is a colorless liquid, boiling point 32°C. insoluble in water, soluble in alcohol or ether. Furan vapor produces a green coloration on pine wood moistened with hydrochloric acid. Furan may he made from mucic acid. COOHtCHOHLCOOH. by dry distillation into pyromneie acid, C4H1O - COOH. and then heating the latter under pressure at 270 C. Furan derivatives arc known, namely, methyl, primary alcohol, aldehyde, carboxylic acid, in which the group attachment is at carbon number 2 ... [Pg.693]

Formation of quinuclidine-3-carboxylic acid derivatives (68) from these reactions was conclusive proof of saponification of the ethoxy-carbonyl group at position 2 of the diester (61). A similar reaction takes place with diethyl quinuclidine-2,3-dicarboxylate.100 This is in agreement with the known principle of easier saponification of a- than j8-amino acid esters. Some 3-(j8-acyloxyethyl)-2-diethylaminomethyl-quinuclidines (69, 70)123 on distillation at atmospheric pressure cyclize with loss of ester and formation of a new tricyclic system, quinuclidino[2,3-c]piperidine (72). The same reaction takes place by heating the corresponding amino alcohol (71) with phthalic anhydride in the presence of benzenesulfonic acid.123... [Pg.498]

Carboxy terminal amino acid or peptide thiols are prepared from various p-amino alcohols by conversion into a thioacetate (R2NHCHR1CH2SAc) via a tosylate followed by saponification.Several methods have been used to prepare N-terminal peptide thiols, the most common procedure is the coupling of (acetylsulfanyl)- or (benzoylsulfanyl)alkanoic acids or add chlorides with a-amino esters or peptide esters, followed by deprotection of the sulfanyl and carboxy groups. 8 16 Other synthetic methods include deprotection of (trit-ylsulfanyl)alkanoyl peptides, 1718 alkaline treatment of the thiolactones from protected a-sulfanyl acids, 19 and preparation of P-sulfanylamides (HSCH2CHR1NHCOR2, retro-thior-phan derivatives) from N-protected amino acids by reaction of P-amine disulfides with carboxylic acid derivatives, followed by reduction. 20,21 In many cases, the amino acid or peptide thiols are synthesized as the disulfides and reduced to the corresponding thiols by the addition of dithiothreitol prior to use. [Pg.304]

Since esters are derived from carboxylic acids and alcohols, they are named by first identifying the alcohol-related part and then the acid-related part, using the -ate ending. Ethyl acetate, for example, is the ester derived from ethanol and acetic acid. [Pg.1014]

Chromatographic separatum of enantiomersThe carbamate, ureido, and amide derivatives obtained without racemization from enantiomeric amines, alcohols, and carboxylic acids, respectively (equations T III), with this isocyanate are stable for months and are suitable for gas chromatographic separation using a polymeric chiral stationary phase (derived, for example, from L-valine-(S)-a-phenylethylamide). This methodology permits separation of chiral a- and /1-hydroxy acids and also N-mclhylnmino acids. [Pg.481]


See other pages where Alcohols from carboxylic acid derivatives is mentioned: [Pg.71]    [Pg.675]    [Pg.478]    [Pg.172]    [Pg.217]    [Pg.178]    [Pg.1045]    [Pg.178]    [Pg.44]    [Pg.187]    [Pg.268]    [Pg.112]    [Pg.117]    [Pg.212]    [Pg.151]    [Pg.83]    [Pg.317]    [Pg.222]    [Pg.463]    [Pg.1045]    [Pg.77]    [Pg.897]    [Pg.93]   
See also in sourсe #XX -- [ Pg.588 ]




SEARCH



Alcohols carboxylation

Alcohols derivatives

Alcohols from acid derivatives

Alcohols from carboxylic acids

Carboxylic acid derivates

Carboxylic acid derivs

Carboxylic acids alcohol)

From acid derivatives

From carboxylic acid derivatives

From carboxylic acids

© 2024 chempedia.info