Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Etherification Reaction

The epoxy-hydroxyl reaction (etherification) modifies the initial stoichiometric ratio based on epoxy to amino hydrogen groups. [Pg.38]

On the other hand, the short column of DX-packings favored the stripping and therefore the side reaction (etherification). [Pg.262]

The synthesis strategy for y/alcohols is depicted in Figurel 1,6a and 11.6b. 5/alcohols were converted into monomers or attached to polymer chains by several subsequent reactions. Etherification with allyl bromide resulted in allyl ethers [54] (Figure 11.6c). Phase transfer-catalyzed etherification of y/alcohols and p-(chloromethyl) styrene yielded y/styrene [35] (Figure 11.6d). By reaction with (meth)acryloyl chloride, sf (meth)acrylates were obtained, a method that was widely employed [36, 55, 56] (Figure 11.6e). Besides, the reaction of isocyanatoethyl (meth)acrylate with ... [Pg.241]

Substitution reactions at secondary hydroxyls are generally performed either for analysis of structure or to serve a protective function during other reactions. Etherification of the nonanomeric hydroxyls was an important structural tool in the analysis of oligosaccharide and polysaccharide structure. Methyl ethers have been employed for structural determination for more than 75 years. Thus, methyl ether formation in a polysaccharide results in substitution only at free hydroxyls. Subsequent analysis of the methylated derivatives reveals positions previously occupied in glycosidic linkage. Reagents used for this purpose have evolved from dimethylsulfate to the commonly employed method of Hakomori using sodium hydride and dimethylsulfoxide. [Pg.56]

Isomerization. Isomerization is a catalytic process which converts normal paraffins to isoparaffins. The feed is usually light virgin naphtha and the catalyst platinum on an alumina or zeoflte base. Octanes may be increased by over 30 numbers when normal pentane and normal hexane are isomerized. Another beneficial reaction that occurs is that any benzene in the feed is converted to cyclohexane. Although isomerization produces high quahty blendstocks, it is also used to produce feeds for alkylation and etherification processes. Normal butane, which is generally in excess in the refinery slate because of RVP concerns, can be isomerized and then converted to alkylate or to methyl tert-huty ether (MTBE) with a small increase in octane and a large decrease in RVP. [Pg.185]

Chemical Properties. Neopentyl glycol can undergo typical glycol reactions such as esterification (qv), etherification, condensation, and oxidation. When basic kinetic studies of the esterification rate were carried out for neopentyl glycol, the absolute esterification rate of neopentyl glycol with / -butyric acid was approximately 20 times that of ethylene glycol with / -butyric acid (7). [Pg.371]

Substitution Reactions on Side Chains. Because the benzyl carbon is the most reactive site on the propanoid side chain, many substitution reactions occur at this position. Typically, substitution reactions occur by attack of a nucleophilic reagent on a benzyl carbon present in the form of a carbonium ion or a methine group in a quinonemethide stmeture. In a reversal of the ether cleavage reactions described, benzyl alcohols and ethers may be transformed to alkyl or aryl ethers by acid-catalyzed etherifications or transetherifications with alcohol or phenol. The conversion of a benzyl alcohol or ether to a sulfonic acid group is among the most important side chain modification reactions because it is essential to the solubilization of lignin in the sulfite pulping process (17). [Pg.139]

Etherification. Ethers of amyl alcohols have been prepared by reaction with ben2hydrol (63), activated aromatic haUdes (64), dehydration-addition reactions (65), addition to olefins (66—71), alkoxylation with olefin oxides (72,73) and displacement reactions involving thek alkah metal salts (74—76). [Pg.373]

Etherification. The reaction of alkyl haUdes with sugar polyols in the presence of aqueous alkaline reagents generally results in partial etherification. Thus, a tetraaHyl ether is formed on reaction of D-mannitol with aHyl bromide in the presence of 20% sodium hydroxide at 75°C (124). Treatment of this partial ether with metallic sodium to form an alcoholate, followed by reaction with additional aHyl bromide, leads to hexaaHyl D-mannitol (125). Complete methylation of D-mannitol occurs, however, by the action of dimethyl sulfate and sodium hydroxide (126). A mixture of tetra- and pentabutyloxymethyl ethers of D-mannitol results from the action of butyl chloromethyl ether (127). Completely substituted trimethylsilyl derivatives of polyols, distillable in vacuo, are prepared by interaction with trim ethyl chi oro s il an e in the presence of pyridine (128). Hexavinylmannitol is obtained from D-mannitol and acetylene at 25.31 MPa (250 atm) and 160°C (129). [Pg.51]

Reaction of olefin oxides (epoxides) to produce poly(oxyalkylene) ether derivatives is the etherification of polyols of greatest commercial importance. Epoxides used include ethylene oxide, propylene oxide, and epichl orohydrin. The products of oxyalkylation have the same number of hydroxyl groups per mole as the starting polyol. Examples include the poly(oxypropylene) ethers of sorbitol (130) and lactitol (131), usually formed in the presence of an alkaline catalyst such as potassium hydroxide. Reaction of epichl orohydrin and isosorbide leads to the bisglycidyl ether (132). A polysubstituted carboxyethyl ether of mannitol has been obtained by the interaction of mannitol with acrylonitrile followed by hydrolysis of the intermediate cyanoethyl ether (133). [Pg.51]

Because vanillin is a phenol aldehyde, it is stable to autooxidation and does not undergo the Cannizzarro reaction. Numerous derivatives can be prepared by etherification or esterification of the hydroxy group and by aldol condensation at the aldehyde group. AH three functional groups in vanillin are... [Pg.398]

Etherification. Ethers of poly(vinyl alcohol) are easily formed. Insoluble internal ethers are formed by the elimination of water, a reaction cataly2ed by mineral acids and alkaU. [Pg.481]

Several derivatives of cellulose, including cellulose acetate, can be prepared in solution in dimethylacetamide—lithium chloride (65). Reportedly, this combination does not react with the hydroxy groups, thus leaving them free for esterification or etherification reactions. In another homogeneous-solution method, cellulose is treated with dinitrogen tetroxide in DMF to form the soluble cellulose nitrite ester this is then ester-interchanged with acetic anhydride (66). With pyridine as the catalyst, this method yields cellulose acetate with DS < 2.0. [Pg.253]

Etherification. A mixture of ethylene chlorohydrin ia 30% aqueous NaOH may be added to phenol at 100—110°C to give 2-phenoxyethanol [122-99-6] ia 98% yield (39). A cationic starch ether is made by reaction of a chlorohydfin-quaternary ammonium compound such as... [Pg.73]

Etherification. The accessible, available hydroxyl groups on the 2, 3, and 6 positions of the anhydroglucose residue are quite reactive (40) and provide sites for much of the current modification of cotton ceUulose to impart special or value-added properties. The two most common classes into which modifications fall include etherification and esterification of the cotton ceUulose hydroxyls as weU as addition reactions with certain unsaturated compounds to produce ceUulose ethers (see Cellulose, ethers). One large class of ceUulose-reactive dyestuffs in commercial use attaches to the ceUulose through an alkaH-catalyzed etherification by nucleophilic attack of the chlorotriazine moiety of the dyestuff ... [Pg.314]

Cyanoethylation. One of the eadiest examples of etherification of ceUulose by an unsaturated compound through vinyl addition is the cyanoethylation of cotton (58). This base-cataly2ed reaction with acrylonitrile [107-13-1/, a Michael addition, proceeds as foUows ... [Pg.315]

An extensive listing of 35 other reactions including alkylation, etherification, alcoholysis, and halogenation has been compiled (1) to show the versatihty of ethanol as a reactant. [Pg.416]

Esterification and etherification may be catalyzed by mineral acids or BF3. The reaction of isobutylene with methanol to make MTBE is catalyzed by a sulfonated ion exchange resin. [Pg.2094]

Cross-conjugated dienones are quite inert to nucleophilic reactions at C-3, and the susceptibility of these systems to dienone-phenol rearrangement precludes the use of strong acid conditions. In spite of previous statements, A " -3-ketones do not form ketals, thioketals or enamines, and therefore no convenient protecting groups are available for this chromophore. Enol ethers are not formed by the orthoformate procedure, but preparation of A -trienol ethers from A -3-ketones has been claimed. Another route to A -trien-3-ol ethers involves conjugate addition of alcohol, enol etherification and then alcohol removal from la-alkoxy compounds. [Pg.394]

However, 17a,21-acetonides (103), as well as acetals of other ketones or aldehydes, can be easily prepared by acid-catalyzed exchange reaction with dimethoxypropane or other alkyl acetals in dimethylformamide or benzene. Enol etherification of the A -S-ketone also occurs with the former procedure. [Pg.405]

Nucleophilic trans-etherification of alkoxy-s-triazines occurs in a few minutes at the boiling point of various alcohols, either molar or catalytic amounts of alkoxide or triethylamine being used. This reaction occurs during attempts to prepare unsymmetrical polyalkoxy compounds e.g., 333 is formed from 332. [Pg.305]

An unusual sensitivity of this reaction to structure was reported by Ram and Neumeyer (51). When R = H (1), hydrogenolysis could not be effected either directly or by catalytic hydrogen transfer (13), but etherification to give 2 (R = CH3) permitted slow formation of 3, The mild conditions of hydrogenation were required to avoid racemization at the 6a-position. Hydrogenolysis is usually much more facile than is indicated by this example. [Pg.128]


See other pages where Etherification Reaction is mentioned: [Pg.658]    [Pg.304]    [Pg.215]    [Pg.304]    [Pg.278]    [Pg.304]    [Pg.70]    [Pg.658]    [Pg.304]    [Pg.215]    [Pg.304]    [Pg.278]    [Pg.304]    [Pg.70]    [Pg.79]    [Pg.232]    [Pg.185]    [Pg.387]    [Pg.482]    [Pg.42]    [Pg.42]    [Pg.346]    [Pg.480]    [Pg.308]    [Pg.60]    [Pg.373]    [Pg.242]    [Pg.271]    [Pg.314]    [Pg.315]    [Pg.824]    [Pg.387]    [Pg.333]    [Pg.187]   
See also in sourсe #XX -- [ Pg.276 , Pg.278 ]




SEARCH



Allylic etherification reactions

Etherification

Etherification cross-coupling reactions

Etherification reaction conditions

Etherification reactions with simultaneous

Etherification, commercial reactions

Etherifications

Intramolecular reaction etherification

© 2024 chempedia.info