Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloromethyl alcohol

The typical acid catalysts used for novolak resins are sulfuric acid, sulfonic acid, oxaUc acid, or occasionally phosphoric acid. Hydrochloric acid, although once widely used, has been abandoned because of the possible formation of toxic chloromethyl ether by-products. The type of acid catalyst used and reaction conditions affect resin stmcture and properties. For example, oxaUc acid, used for resins chosen for electrical appHcations, decomposes into volatile by-products at elevated processing temperatures. OxaUc acid-cataly2ed novolaks contain small amounts (1—2% of the original formaldehyde) of ben2odioxanes formed by the cycli2ation and dehydration of the ben2yl alcohol hemiformal intermediates. [Pg.294]

Etherification. The reaction of alkyl haUdes with sugar polyols in the presence of aqueous alkaline reagents generally results in partial etherification. Thus, a tetraaHyl ether is formed on reaction of D-mannitol with aHyl bromide in the presence of 20% sodium hydroxide at 75°C (124). Treatment of this partial ether with metallic sodium to form an alcoholate, followed by reaction with additional aHyl bromide, leads to hexaaHyl D-mannitol (125). Complete methylation of D-mannitol occurs, however, by the action of dimethyl sulfate and sodium hydroxide (126). A mixture of tetra- and pentabutyloxymethyl ethers of D-mannitol results from the action of butyl chloromethyl ether (127). Completely substituted trimethylsilyl derivatives of polyols, distillable in vacuo, are prepared by interaction with trim ethyl chi oro s il an e in the presence of pyridine (128). Hexavinylmannitol is obtained from D-mannitol and acetylene at 25.31 MPa (250 atm) and 160°C (129). [Pg.51]

Benzyl chloride [(chloromethyl)henzene, a-chlorotoluene], CgH CH2Cl, is a colorless Hquid with a very pungent odor. Its vapors are irritating to the eyes and mucous membranes, and it is classified as a powerfljl lacrimator. The physical properties of pure benzyl chloride are given in Table 2 (2—7). Benzyl chloride is insoluble in cold water, but decomposes slowly in hot water to benzyl alcohol. It is miscible in all proportions at room temperature with most organic solvents. The flash point of benzyl chloride is 67°C (closed cup) 74°C (open cup) autoignition temperature is 585°C lower flammability limit 1.1% by volume in air. Its volume coefficient of expansion is 9.72 x. ... [Pg.58]

Dimroth rearrangement, 5, 438 Imidazolium chloride, 4-chloromethyl-reaction with poly(vinyl alcohol), 1, 306 Imidazolium chloride, 2,4,5-tri(diethylamino)-reduction, 5, 415 Imidazolium complexes, 7, 746... [Pg.659]

The polymer-bound catalysts A-C. (Table 31) are prepared by reaction of the corresponding amino alcohols with partially chloromethylated 1 -2% cross-linked polystyrene. In the case of A, the enantioselectivity of the addition of dialkylzincs to aldehydes is higher than with the corresponding monomeric ephedrine derivatives (vide supra). Interesting insights into the mechanism of the alkylation of aldehydes by dialkylzinc reagents can be obtained from the experi-... [Pg.174]

This procedure illustrates a general method for the stereoselective synthesis of ( P)-disubstitnted alkenyl alcohols. The reductive elimination of cyclic /3-halo-ethers with metals was first introduced by Paul3 and one example, the conversion of tetrahydrofurfuryl chloride [2-(chloromethyl)tetrahydrofuran] to 4-penten-l-ol, is described in an earlier volume of this series.4 In 1947 Paul and Riobe5 prepared 4-nonen-l-ol by this method, and the general method has subsequently been applied to obtain alkenyl alcohols with other substitution patterns.2,6-8 (I )-4-Hexen-l-ol has been prepared by this method9 and in lower yield by an analogous reaction with 3-bromo-2-methyltetra-hydropyran.10... [Pg.66]

Naphthalene dioxygenase from P. putida strain FI is able to oxidize a number of haloge-nated ethenes, propenes, and butenes, and d5 -hept-2-ene and cis-oct-2-ene (Lange and Wackett 1997). Alkenes with halogen and methyl substituents at double bonds form allyl alcohols, whereas those with only alkyl or chloromethyl groups form diols. [Pg.121]

From chloromethyl or bromomethyl aromatic compounds by heating with hexamethylenetetramine (hexamine) in aqueous alcohol or aqueous ac ic acid. A quaternary ammonium compound is formed, which yields the aldehyde upon treatmait with water in the presence of hexamine for example... [Pg.692]

The oxygen nucleophiles that are of primary interest in synthesis are the hydroxide ion (or water), alkoxide ions, and carboxylate anions, which lead, respectively, to alcohols, ethers, and esters. Since each of these nucleophiles can also act as a base, reaction conditions are selected to favor substitution over elimination. Usually, a given alcohol is more easily obtained than the corresponding halide so the halide-to-alcohol transformation is not used extensively for synthesis. The hydrolysis of benzyl halides to the corresponding alcohols proceeds in good yield. This can be a useful synthetic transformation because benzyl halides are available either by side chain halogenation or by the chloromethylation reaction (Section 11.1.3). [Pg.226]

Halide ions will also act as nucleophiles towards aldehydes under acid catalysis, but the resultant, for example, 1,1-hydroxychloro compound (35) is highly unstable, the equilibrium lying over in favour of starting material. With HC1 in solution in an alcohol, ROH, the equilibrium is more favourable, and 1,1-alkoxychloro compounds may be prepared, e.g. 1-chloro-l-methoxymethane (36, a-chloromethyl ether ) from CH20 and MeOH (cf. acetal formation, p. 209), provided the reaction mixture is neutralised before isolation is attempted ... [Pg.214]

Benzyl alcohol Hydrogen bromide, Iron l,2-Bis(chloromethyl)benzene Catalytic impurities See other gas evolution incidents, polycondensation reaction incidents... [Pg.899]

Ye et al. reported that the reduction of 2,4-dichlorophenyl-2-chloroethanone 1 with potassium borohydride in dimethylformamide to give 90% a-chloromethyl-2,4-dichlorobenzyl alcohol 2. Alkylation of imidazole with compound 2 in dimethyl formamide in the presence of sodium hydroxide and triethylbenzyl ammonium chloride, gave l-(2,4-dichlorophenyl-2-imidazolyl)ethanol 3 and etherification of 3 with 2,4-dichlorobenzyl chloride under the same condition, 62% yield of miconazole [9]. [Pg.7]

Methoxymethylation of alcohols is generally achieved through alkylation with chloromethyl methyl ether. The procedure described here for the preparation of Bu3SnCH20CH20CH3 avoids the use of the highly toxic chloromethyl ether by employing an acid-catalyzed acetal exchange reaction with dimethoxymethane for the... [Pg.205]

In 1983, Prasad et al.12 first reported the condensation of chloromethyl polystyrene with /V-hydroxyphthalimide to give the ester, hydrazinolysis of which yielded the desired resin-bound hydroxylamine. However, the sole purpose of this reagent was to react with, and hence extract ketones from, a complex steroidal mixture, and its use for the solid-phase synthesis of hydroxamic acids was not explored. Recently, the exploitation of the above solid-phase approach for the synthesis of hydroxamic acids was independently reported by three groups,7-9 all of which differ only in the method for the initial anchoring of TV-hydroxyphtha-limide to an 4-alkoxybenzyl alcohol functionalized polystyrene or trityl chloride polystyrene. Subsequent /V-deprotection was... [Pg.97]

Acetyl-3-methyl-4,5-dihydrothiophen-4-one Benzyl alcohol, Hydrogen bromide, Iron Benzyl bromide, Molecular sieve Benzyl chloride, Catalytic impurities Benzyl fluoride l,2-Bis(chloromethyl)benzene Ethylene oxide, Contaminants Furoyl chloride... [Pg.342]

Primary and secondary alcohols are oxidized slowly at low temperatures by benzyltriethylammonium permanganate in dichloromethane primary alcohols produce methylene esters (60-70%), resulting from reaction of the initially formed carboxylate anion with the solvent, with minor amounts of the chloromethyl esters and the carboxylic acids. Secondary alcohols are oxidized (75-95%) to ketones [34] the yields compare favourably with those obtained using potassium permanganate on a solid support. 1,5-Diols are oxidized by potassium permanganate under phase-transfer catalytic conditions to yield 8,8-disubstituted-8-valerolactones [35] (Scheme 10.1). [Pg.419]

Epoxides bearing a leaving group in a suitable position, such as chloromethyl epoxides, react with sodium telluride (prepared by the Rongalite method), giving allyhc alcohols. ... [Pg.130]


See other pages where Chloromethyl alcohol is mentioned: [Pg.497]    [Pg.387]    [Pg.149]    [Pg.497]    [Pg.387]    [Pg.149]    [Pg.763]    [Pg.157]    [Pg.32]    [Pg.102]    [Pg.128]    [Pg.312]    [Pg.170]    [Pg.626]    [Pg.151]    [Pg.143]    [Pg.187]    [Pg.763]    [Pg.175]    [Pg.184]    [Pg.155]    [Pg.102]    [Pg.137]    [Pg.184]    [Pg.4]    [Pg.153]    [Pg.90]    [Pg.140]    [Pg.238]    [Pg.152]    [Pg.172]    [Pg.265]    [Pg.130]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



Chloromethyl

Chloromethylated

Chloromethylation

© 2024 chempedia.info