Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly reaction with

Several studies have demonstrated the successful incoriDoration of [60]fullerene into polymeric stmctures by following two general concepts (i) in-chain addition, so called pearl necklace type polymers or (ii) on-chain addition pendant polymers. Pendant copolymers emerge predominantly from the controlled mono- and multiple functionalization of the fullerene core with different amine-, azide-, ethylene propylene terjDolymer, polystyrene, poly(oxyethylene) and poly(oxypropylene) precursors [63,64,65,66,62 and 66]. On the other hand, (-CggPd-) polymers of the pearl necklace type were fonned via the periodic linkage of [60]fullerene and Pd monomer units after their initial reaction with thep-xy y ene diradical [69,70 and 71]. [Pg.2416]

Most of the reactions with which organic chemists are concerned involve poly-atomic molecules, and occur in solution at temperatures not far removed from the ambient. There is not at present the faintest possibility of chemical theory predicting the absolute rates of such processes. [Pg.122]

Acetals are readily formed with alcohols and cycHc acetals with 1,2 and 1,3-diols (19). Furfural reacts with poly(vinyl alcohol) under acid catalysis to effect acetalization of the hydroxyl groups (20,21). Reaction with acetic anhydride under appropriate conditions gives the acylal, furfuryUdene diacetate... [Pg.77]

HydrophobicaHy Modified, Ethoxylated Urethane. HEUR associative thickeners are in effect poly(oxyethylene) polymers that contain terminal hydrophobe units (66). They can be synthesized via esterification with monoacids, tosylation reactions, or direct reaction with monoisocyanates. There are problems associated with aH of the methods of synthesis. The general commercial procedure for their synthesis is by a step-growth addition of... [Pg.321]

The largest commercial use of ethylene glycol is its reaction with dicarboxyUc acids to form linear polyesters. Poly(ethylene terephthalate)... [Pg.357]

The resihency and dyeabihty of poly(vinyl alcohol) fibers is improved by a process incorporating -hydroxybenzaldehyde to provide a site for the formation of a stable Mannich base. Hydroxyl groups on the fiber are converted to acetal groups by -hydroxybenzaldehyde. Subsequent reaction with formaldehyde and ammonia or an alkylamine is rapid and forms a stable Mannich base that is attached to the polymer backbone (94). [Pg.508]

The functionalization of poly(phen5isilane) [99936-07-9] by reaction with CCl and with CBr has also been reported (117). This yields polymers containing Si—Cl or Si—Br bonds, but leaves the Si—C H bonds intact. [Pg.262]

The in situ process is simpler because it requires less material handling (35) however, this process has been used only for resole resins. When phenol is used, the reaction system is initially one-phase alkylated phenols and bisphenol A present special problems. As the reaction with formaldehyde progresses at 80—100°C, the resin becomes water-insoluble and phase separation takes place. Catalysts such as hexa produce an early phase separation, whereas NaOH-based resins retain water solubiUty to a higher molecular weight. If the reaction medium contains a protective coUoid at phase separation, a resin-in-water dispersion forms. Alternatively, the protective coUoid can be added later in the reaction sequence, in which case the reaction mass may temporarily be a water-in-resin dispersion. The protective coUoid serves to assist particle formation and stabUizes the final particles against coalescence. Some examples of protective coUoids are poly(vinyl alcohol), gum arabic, and hydroxyethjlceUulose. [Pg.298]

Small amounts of polymer-grade terephthaHc acid and dimethyl terephthalate are used as polymer raw materials for a variety of appHcations, eg, adhesives and coatings. They are also used to make high performance polymers or engineering resins. Poly(ethylene terephthalate) is itself an engineering resin, although one more widely used is poly (butylene) terephthalate, formed by reaction with 1,4-butanediol as the comonomer. [Pg.492]

Halogen Displacement. Poly(phenylene oxide)s can also be prepared from 4-halo-2,6-disubstituted phenols by displacement of the halogen to form the ether linkage (48). A trace of an oxidizing agent or free radical initiates the displacement reaction. With 4-bromo-2,6-dimethylphenol, the reaction can be represented as in equation 10 ... [Pg.329]

Association Complexes. The unshared electron pairs of the ether oxygens, which give the polymer strong hydrogen bonding affinity, can also take part in association reactions with a variety of monomeric and polymeric electron acceptors (40,41). These include poly(acryhc acid), poly(methacryhc acid), copolymers of maleic and acryflc acids, tannic acid, naphthoHc and phenoHc compounds, as well as urea and thiourea (42—47). [Pg.342]

Nucleophilic Substitution Route. Commercial synthesis of poly(arylethersulfone)s is accompHshed almost exclusively via the nucleophilic substitution polycondensation route. This synthesis route, discovered at Union Carbide in the early 1960s (3,4), involves reaction of the bisphenol of choice with 4,4 -dichlorodiphenylsulfone in a dipolar aprotic solvent in the presence of an alkaUbase. Examples of dipolar aprotic solvents include A/-methyl-2-pyrrohdinone (NMP), dimethyl acetamide (DMAc), sulfolane, and dimethyl sulfoxide (DMSO). Examples of suitable bases are sodium hydroxide, potassium hydroxide, and potassium carbonate. In the case of polysulfone (PSE) synthesis, the reaction is a two-step process in which the dialkah metal salt of bisphenol A (1) is first formed in situ from bisphenol A [80-05-7] by reaction with the base (eg, two molar equivalents of NaOH),... [Pg.460]

Natural Products. Many natural products, eg, sugars, starches, and cellulose, contain hydroxyl groups that react with propylene oxide. Base-cataly2ed reactions yield propylene glycol monoethers and poly(propylene glycol) ethers (61—64). Reaction with fatty acids results ia a mixture of mono- and diesters (65). Cellulose fibers, eg, cotton (qv), have been treated with propylene oxide (66—68). [Pg.135]

Polyurethane foams are formed by reaction with glycerol with poly(propylene oxide), sometimes capped with poly(ethylene oxide) groups with a reaction product of trimethylolpropane and propylene oxide or with other appropriate polyols. A typical reaction sequence is shown below, in which HO—R—OH represents the diol. If a triol is used, a cross-linked product is obtained. [Pg.190]

Poly(vinyl alcohol) participates in chemical reactions in a manner similar to other secondary polyhydric alcohols (82—84). Of greatest commercial importance are reactions with aldehydes to form acetals, such as poly(vinyl butyral) and poly(vinyl formal). [Pg.480]

MO calculations, 2, 99 in photography, 1, 389 reactions with poly(styrene), 1, 309 structure, 2, 102 Bipyrimidines synthesis, 3, 103... [Pg.569]

Dimroth rearrangement, 5, 438 Imidazolium chloride, 4-chloromethyl-reaction with poly(vinyl alcohol), 1, 306 Imidazolium chloride, 2,4,5-tri(diethylamino)-reduction, 5, 415 Imidazolium complexes, 7, 746... [Pg.659]

Terminally unsaturated fluonnated alkenoic acids can be obtained from poly-fluorocycloalkenes by reaction with potassium hydroxide m rert-butyl alcohol [24] (equation 26) The use of a tertiary alcohol is critical because primary and secondar y alcohols lead to ethers of the cycloalkenes The use of a polar aprotic solvent such as diglyme generates enols of diketones [26] (equation 27) The compound where... [Pg.429]

The Zincke reaction has also been adapted for the solid phase. Dupas et al. prepared NADH-model precursors 58, immobilized on silica, by reaction of bound amino functions 57 with Zincke salt 8 (Scheme 8.4.19) for subsequent reduction to the 1,4-dihydropyridines with sodium dithionite. Earlier, Ise and co-workers utilized the Zincke reaction to prepare catalytic polyelectrolytes, starting from poly(4-vinylpyridine). Formation of Zincke salts at pyridine positions within the polymer was achieved by reaction with 2,4-dinitrochlorobenzene, and these sites were then functionalized with various amines. The resulting polymers showed catalytic activity in ester hydrolysis. ... [Pg.363]

The reaction with hydroxamic acid chlorides has been extensively used recently by Italian chemists to synthesize di- and poly-isoxa-zolyls, as exemplified by 5-substituted 3,3 -diisoxazolyIs (29). °... [Pg.373]

A disaccharide is added to a pyridine SO3 complex solution, which is prepared by reacting 5 to 6 times the molar amount of liquid SO3 as much as that of disaccharide with 5 to 10 times the amount of pyridine as that of the disaccharide at 0°C to 5°C, for sulfation at 50°C to 70°C for 3 to 7 hours. After the completion of sulfation, the greater part of pyridine Is removed by decantation. The obtained solution exhibits an acidity that is so strong that it is improper to apply the reaction with aluminum ion and, therefore, sodium hydroxide is added for neutralization. After the remaining pyridine is removed by concentration, 100 unit volumes of water per unit volume of the residue is added thereto. To the solution is then added aluminum ion solution mainly containing aluminum dihydroxychloride, the pH of which is 1.0 to 1.2, in such an amount that the aluminum ion Is present in an amount of 4 to 6 molar parts of the amount of disaccharide to provide a pH of 4 to 4.5. The mixture is reacted under stirring at room temperature and the formed disaccharide poly sulfate-aluminum compound is allowed to precipitate. After filtration, the residue is washed with water and dried. [Pg.1396]


See other pages where Poly reaction with is mentioned: [Pg.24]    [Pg.68]    [Pg.322]    [Pg.516]    [Pg.517]    [Pg.68]    [Pg.143]    [Pg.54]    [Pg.163]    [Pg.341]    [Pg.347]    [Pg.350]    [Pg.482]    [Pg.263]    [Pg.43]    [Pg.41]    [Pg.537]    [Pg.632]    [Pg.650]    [Pg.700]    [Pg.700]    [Pg.710]    [Pg.729]    [Pg.745]    [Pg.789]    [Pg.412]    [Pg.413]    [Pg.67]    [Pg.716]    [Pg.740]   


SEARCH



Cellobiosides, alkyl and aryl poly-0acetyl-«- , reaction with hydrogen bromide heptaacetate

Poly , reaction with fluorinated alcohols

Poly acid reaction with glass

Poly benzenes, reaction with

Poly reaction

Poly reaction with nickel

Poly reaction with surface

Poly solid-state reactions with

© 2024 chempedia.info