Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dialkylzinc reagent

CotLespondingly, tlie catalytic 1,4-addition of dialkylzinc reagents to 3-nitro-iimarin 89 iSdieme 7.24), witli a fixed irans orientation of tlie aiyl and nitro oiips, proceeds witli excellent yidds 190-99 96), bigli diastereoselectivity Id.r. up to ), and enantiosdectivities of up to 9296. Hydrolysis of tlie lactone moiety in 90 IS accompanied by decarboxylation, providing an asymmetric syntliesis of /J-aiyl-troalkane 91. [Pg.251]

Pineschi and Feringa reported that chiral copper phosphoramidite catalysts mediate a regiodivergent kinetic resolution (RKR) of cyclic unsaturated epoxides with dialkylzinc reagents, in which epoxide enantiomers are selectively transformed into different regioisomers (allylic and homoallylic alcohols) [90]. The method was also applied to both s-cis and s-trans cyclic allylic epoxides (Schemes 7.45 and 7.46,... [Pg.261]

Since the addition of dialkylzinc reagents to aldehydes can be performed enantioselectively in the presence of a chiral amino alcohol catalyst, such as (-)-(1S,2/ )-Ar,A -dibutylnorephedrine (see Section 1.3.1.7.1.), this reaction is suitable for the kinetic resolution of racemic aldehydes127 and/or the enantioselective synthesis of optically active alcohols with two stereogenic centers starting from racemic aldehydes128 129. Thus, addition of diethylzinc to racemic 2-phenylpropanal in the presence of (-)-(lS,2/ )-Ar,W-dibutylnorephedrine gave a 75 25 mixture of the diastereomeric alcohols syn-4 and anti-4 with 65% ee and 93% ee, respectively, and 60% total yield. In the case of the syn-diastereomer, the (2.S, 3S)-enantiomer predominated, whereas with the twtf-diastereomer, the (2f ,3S)-enantiomer was formed preferentially. [Pg.23]

Formation of C-C Bonds Using Dialkylzinc Reagents Under Chiral Catalysis... [Pg.164]

Table 26. Addition of Dialkylzinc Reagents to Aldehydes under Chiral Catalysis... Table 26. Addition of Dialkylzinc Reagents to Aldehydes under Chiral Catalysis...
Polymer-supported amino alcohols and quaternary ammonium salts catalyze the enan-tioselective addition of dialkylzinc reagents to aldehydes (Table 31). When the quaternary ammonium salt F is used in hexane, it is in the solid state, and it catalyzes the alkylation of benzaldehyde with diethylzinc in good chemical yield and moderate enantioselectivity. On the other hand, when a mixture of dimethylformamide and hexane is used as solvent, the ammonium salt is soluble and no enantioselectivity is observed21. [Pg.174]

The polymer-bound catalysts A-C. (Table 31) are prepared by reaction of the corresponding amino alcohols with partially chloromethylated 1 -2% cross-linked polystyrene. In the case of A, the enantioselectivity of the addition of dialkylzincs to aldehydes is higher than with the corresponding monomeric ephedrine derivatives (vide supra). Interesting insights into the mechanism of the alkylation of aldehydes by dialkylzinc reagents can be obtained from the experi-... [Pg.174]

Optically active alkynyl alcohols can, however, be conveniently prepared by the addition of dialkylzinc reagents of alkynyl aldehydes catalyzed by the chiral ligand (S)-l-methyl-a,a-diphenyl-2-pyrrolidine methanol33-34. [Pg.182]

Scheme 4.13 Additions of functionalised dialkylzinc reagents to ketones with HOCSAC ligand. Scheme 4.13 Additions of functionalised dialkylzinc reagents to ketones with HOCSAC ligand.
This must reflect activation of the carbonyl group by magnesium ion, since ketones are less reactive to pure dialkylzinc reagents and tend to react by reduction rather than addition.141 The addition of alkylzinc reagents is also promoted by trimethylsilyl chloride, which leads to isolation of silyl ethers of the alcohol products.142... [Pg.653]

Further optimization of this reaction was carried out with TFE as an achiral adduct, since reaction with TFE is much faster than that with neopentyl alcohol. We found that dimethyl- and diethylzinc were equally effective, and the chiral zinc reagent could be prepared by mixing the chiral modifier, the achiral alcohol and dialkylzinc reagent in any order without affecting the conversion and selectivity of the reaction. However, the ratio of chiral to achiral modifier does affect the efficiency of the reaction. Less than 1 equiv of the chiral modifier lowered the ee %. For example with 0.8 equiv of 46 the enantiomeric excess of 53 was only 58.8% but with 1 equiv of 46 it was increased to 95.6%. Reaction temperature has a little effect on the enantiomeric excess. Reactions with zinc alkoxide derived for 46 and TFE gave 53 with 99.2% ee at 0°C and 94.0% ee at 40°C. [Pg.33]

Seebach and coworkers have developed enantioselective conjugate additions of primary dialkylzinc reagents to 2-aryl- and 2-heteroaryl-nitroalkenes mediated by titanium-TADDO-Lates (Eq. 4.90). x a TADDOLs and their derivatives are excellent chiral auxiliaries.9611... [Pg.99]


See other pages where Dialkylzinc reagent is mentioned: [Pg.121]    [Pg.126]    [Pg.133]    [Pg.133]    [Pg.224]    [Pg.227]    [Pg.228]    [Pg.252]    [Pg.255]    [Pg.283]    [Pg.247]    [Pg.164]    [Pg.164]    [Pg.168]    [Pg.169]    [Pg.172]    [Pg.179]    [Pg.183]    [Pg.77]    [Pg.77]    [Pg.78]    [Pg.78]    [Pg.105]    [Pg.106]    [Pg.106]    [Pg.106]    [Pg.128]    [Pg.157]    [Pg.167]    [Pg.169]    [Pg.382]    [Pg.386]    [Pg.198]   
See also in sourсe #XX -- [ Pg.53 , Pg.357 ]

See also in sourсe #XX -- [ Pg.53 , Pg.357 ]

See also in sourсe #XX -- [ Pg.317 ]

See also in sourсe #XX -- [ Pg.174 , Pg.276 , Pg.353 ]

See also in sourсe #XX -- [ Pg.638 , Pg.639 ]




SEARCH



Dialkylzinc

Dialkylzincs

© 2024 chempedia.info