Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbents evaluation

The problems associated with the application of this (or any other) model have been discussed. Because of the form of the typical isotherm, which exhibits a broad plateau region, fitting of experimental results to the model requires that data be obtained over a very broad range of concentrations. This is often very difficult to accomplish in practice, especially when difference methods are used to determine the amount of polymer adsorbed. Evaluation of adsorption in real systems is further complicated by a lack of knowledge of the available solid surface area. The latter may be affected by particle size, shape and surface topography and by polymer bridging between particles. [Pg.35]

The adsorbents evaluated were alumina [Woelm, neutral,... [Pg.210]

Important characteristics of the ten adsorbents evaluated in this study relevant to plutonium removal from PFP wastewater are summarized and compared in Table IV. Properties that an ideal adsorbent should possess are (1) high adsorption distribution... [Pg.44]

Lakshmi UR, Srivastava VC, Mall ID, Lataye DH (2009) Rice husk ash an effective adsorbent evaluation of adsorptive characteristics for Indigo Carmine dye. J Environ Manag 90 710-720... [Pg.372]

The external reflection of infrared radiation can be used to characterize the thickness and orientation of adsorbates on metal surfaces. Buontempo and Rice [153-155] have recently extended this technique to molecules at dielectric surfaces, including Langmuir monolayers at the air-water interface. Analysis of the dichroic ratio, the ratio of reflectivity parallel to the plane of incidence (p-polarization) to that perpendicular to it (.r-polarization) allows evaluation of the molecular orientation in terms of a tilt angle and rotation around the backbone [153]. An example of the p-polarized reflection spectrum for stearyl alcohol is shown in Fig. IV-13. Unfortunately, quantitative analysis of the experimental measurements of the antisymmetric CH2 stretch for heneicosanol [153,155] stearly alcohol [154] and tetracosanoic [156] monolayers is made difflcult by the scatter in the IR peak heights. [Pg.127]

Equations X-12 and X-13 thus provide a thermodynamic evaluation of the change in interfacial free energy accompanying adsorption. As discussed further in Section X-5C, typical values of v for adsorbed films on solids range up to 100 ergs/cm. ... [Pg.351]

How are fiindamental aspects of surface reactions studied The surface science approach uses a simplified system to model the more complicated real-world systems. At the heart of this simplified system is the use of well defined surfaces, typically in the fonn of oriented single crystals. A thorough description of these surfaces should include composition, electronic structure and geometric structure measurements, as well as an evaluation of reactivity towards different adsorbates. Furthemiore, the system should be constructed such that it can be made increasingly more complex to more closely mimic macroscopic systems. However, relating surface science results to the corresponding real-world problems often proves to be a stumbling block because of the sheer complexity of these real-world systems. [Pg.921]

POLYRATE can be used for computing reaction rates from either the output of electronic structure calculations or using an analytic potential energy surface. If an analytic potential energy surface is used, the user must create subroutines to evaluate the potential energy and its derivatives then relink the program. POLYRATE can be used for unimolecular gas-phase reactions, bimolecular gas-phase reactions, or the reaction of a gas-phase molecule or adsorbed molecule on a solid surface. [Pg.356]

To characterize the state of the adsorbed phase, it is useful to evaluate its molar entropy, s , defined as the mean molar value for all the molecules adsorbed over the complete range of surface coverage up to the given amount adsorbed. The molar integral entropy of adsorption. As, is then defined as... [Pg.13]

An interesting example of a large specific surface which is wholly external in nature is provided by a dispersed aerosol composed of fine particles free of cracks and fissures. As soon as the aerosol settles out, of course, its particles come into contact with one another and form aggregates but if the particles are spherical, more particularly if the material is hard, the particle-to-particle contacts will be very small in area the interparticulate junctions will then be so weak that many of them will become broken apart during mechanical handling, or be prized open by the film of adsorbate during an adsorption experiment. In favourable cases the flocculated specimen may have so open a structure that it behaves, as far as its adsorptive properties are concerned, as a completely non-porous material. Solids of this kind are of importance because of their relevance to standard adsorption isotherms (cf. Section 2.12) which play a fundamental role in procedures for the evaluation of specific surface area and pore size distribution by adsorption methods. [Pg.24]

Isotherms of Type 111 and Type V, which are the subject of Chapter 5, seem to be characteristic of systems where the adsorbent-adsorbate interaction is unusually weak, and are much less common than those of the other three types. Type III isotherms are indicative of a non-porous solid, and some halting steps have been taken towards their use for the estimation of specific surface but Type V isotherms, which betoken the presence of porosity, offer little if any scope at present for the evaluation of either surface area or pore size distribution. [Pg.37]

At the junction of the adsorbed film and the liquid meniscus the chemical potential of the adsorbate must be the resultant of the joint action of the wall and the curvature of the meniscus. As Derjaguin pointed out, the conventional treatment involves the tacit assumption that the curvature falls jumpwise from 2/r to zero at the junction, whereas the change must actually be a continuous one. Derjaguin put forward a corrected Kelvin equation to take this state of affairs into account but it contains a term which is difficult to evaluate numerically, and has aroused little practical interest. [Pg.123]

In the pioneer work of Foster the correction due to film thinning had to be neglected, but with the coming of the BET and related methods for the evaluation of specific surface, it became possible to estimate the thickness of the adsorbed film on the walls. A number of procedures have been devised for the calculation of pore size distribution, in which the adsorption contribution is allowed for. All of them are necessarily somewhat tedious and require close attention to detail, and at some stage or another involve the assumption of a pore model. The model-less method of Brunauer and his colleagues represents an attempt to postpone the introduction of a model to a late stage in the calculations. [Pg.134]

Perhaps the most direct method of evaluating microporosity is to fill up the micropores with some suitable adsorbate whilst leaving the mesopores, macropores and external surface free. The use of n-nonane as a preadsorbate was proposed by Gregg and Langford on the basis of earlier work on the adsorption of n-alkanes C, to C, on ammonium phos-phomolybdate, a microporous solid. This work had shown that the rate at... [Pg.211]

If a Type I isotherm exhibits a nearly constant adsorption at high relative pressure, the micropore volume is given by the amount adsorbed (converted to a liquid volume) in the plateau region, since the mesopore volume and the external surface are both relatively small. In the more usual case where the Type I isotherm has a finite slope at high relative pressures, both the external area and the micropore volume can be evaluated by the a,-method provided that a standard isotherm on a suitable non-porous reference solid is available. Alternatively, the nonane pre-adsorption method may be used in appropriate cases to separate the processes of micropore filling and surface coverage. At present, however, there is no reliable procedure for the computation of micropore size distribution from a single isotherm but if the size extends down to micropores of molecular dimensions, adsorptive molecules of selected size can be employed as molecular probes. [Pg.286]

Advanced composites and fiber-reinforced materials are used in sailcloth, speedboat, and other types of boat components, and leisure and commercial fishing gear. A ram id and polyethylene fibers are currentiy used in conveyer belts to collect valuable offshore minerals such as cobalt, uranium, and manganese. Constmction of oil-adsorbing fences made of high performance fabrics is being evaluated in Japan as well as the constmction of other pollution control textile materials for maritime use. For most marine uses, the textile materials must be resistant to biodeterioration and to a variety of aqueous pollutants and environmental conditions. [Pg.73]

Anthrahydroquinones have been patented in Japan as bird repeUents (73), and anthraquinone [84-65-1] (qv) is used widely in Europe as a spray to protect growing crops and as a wood dressing. The synthetic pyrethroid deltamethrin [52918-63-5] (27) was evaluated (74), as were other materials, including bendiocarb (20) (75) and 20,25-dia2ocholesterol dihydrochloride [1249-84-9] (Omitrol) (28), a steroid that inhibits embryo development when adsorbed or ingested as a seed treatment of bait com (55,76). [Pg.121]

Other Fiber Evaluation Methods. The extent of fiber separation (fiber openness) is an important evaluation criteria that is commonly measured by several techniques, namely ak permeabiUty, adsorbed gas volume, bulk density, and residence (compression and recovery). The adsorption and retention of kerosene is also used as a measure of fiber openness and fiber adsorption capacity (34). [Pg.353]

Thermodynamic paths are necessary to evaluate the enthalpy (or internal energy) of the fluid phase and the internal energy of the stationary phase. For gas-phase processes at low and modest pressures, the enthalpy departure function for pressure changes can be ignored and a reference state for each pure component chosen to be ideal gas at temperature and a reference state for the stationarv phase (adsorbent plus adsorbate) chosen to be adsorbate-free solid at. Thus, for the gas phase we have... [Pg.1509]

The enthalpy of the adsorbed phase is evaluated along a path for which the gas-phase components undergo temperature change from Tref to T and then are adsorbed isothermaUy, giving... [Pg.1509]

The isoteric heat of adsorption qf is composition-dependent, and the sum of integrals Eq. (16-60) is difficult to evaluate for multicomponent adsorption if the isosteric heats indeed depend on loading. Because each isosteric heat depends on the loadings of all components, the sum must be evaluated for a path beginning with clean adsorbent and ending with the proper loadings of all components, if the isosteric heat of adsorption is constant, as is commonly assumed, then the energy balance (Eq. 16-55) becomes... [Pg.1509]

PSS-SG composite film was tested for sorption of heme proteins hemoglobin (Hb) and myoglobin (Mb). The peroxidaze activity of adsorbed proteins were studied and evaluated by optical and voltammetric methods. Mb-PSS-SG film on PG electrode was shown to be perspective for detection of dissolved oxygen and hydrogen peroxide by voltammetry with linear calibration in the range 2-30 p.M, and detection limit -1.5 p.M. Obtained composite films can be modified by different types of biological active compounds which is important for the development of sensitive elements of biosensors. [Pg.306]

Nevertheless, quantification is possible, a good example being the evaluation of the composition of chromatographic separations adsorbed onto glass, alumina, polyethylene, or paper. When compared with known standards, the presence of only a few nanograms of a strong fluorophore may be quantified to better than 10%. [Pg.382]

The models of Matranga, Myers and Glandt [22] and Tan and Gubbins [23] for supercritical methane adsorption on carbon using a slit shaped pore have shown the importance of pore width on adsorbate density. An estimate of the pore width distribution has been recognized as a valuable tool in evaluating adsorbents. Several methods have been reported for obtaining pore size distributions, (PSDs), some of which are discussed below. [Pg.282]

The most important evaluation of an ANG storage systems performance is the measurement of the amount of usable gas which can be delivered from the system. This is frequently defined as the volume of gas obtained from the storage vessel when the pressure is reduced from the storage pressure of 3.5 MPa (35 bar) to one bar, usually at 298 K. This parameter is referred to as the delivered V/V and is easy to determine directly and free from ambiguity. Moreover, it is independent of the ratio of gas adsorbed to that which remains in the gaseous state. To determine the delivered V/V an adsorbent filled vessel of at least several hundred cubic centimeters is pressurized at 3.5 MPa and allowed to cool under that pressure to 298 K. The gas is then released over a time period sufficient to allow the bed temperature to return to 298 K. A blank, where the vessel is filled with a volume of non-porous material, such as copper shot. [Pg.284]

Isotherm measurements of methane at 298 K can be made either by a gravimetric method using a high pressure microbalance [31], or by using a volumetric method [32]. Both of these methods require correction for the nonideality of methane, but both methods result in the same isotherm for any specific adsorbent [20]. The volumetric method can also be used for measurement of total storage. Here it is not necessary to differentiate between the adsorbed phase and that remaining in the gas phase in void space and macropore volume, but simply to evaluate the total amount of methane in the adsorbent filled vessel. To obtain the maximum storage capacity for the adsorbent, it would be necessary to optimally pack the vessel. [Pg.285]

Critoph, R.E., Evaluation of alternative refrigerant - adsorbent pairs for refrigeration cycles. Applied Thermal Engineering, 1996,16(11), 891 900. [Pg.339]


See other pages where Adsorbents evaluation is mentioned: [Pg.509]    [Pg.509]    [Pg.705]    [Pg.283]    [Pg.2226]    [Pg.12]    [Pg.62]    [Pg.125]    [Pg.354]    [Pg.300]    [Pg.454]    [Pg.242]    [Pg.233]    [Pg.395]    [Pg.395]    [Pg.396]    [Pg.381]    [Pg.413]    [Pg.1505]    [Pg.1547]    [Pg.510]    [Pg.285]    [Pg.443]    [Pg.428]   
See also in sourсe #XX -- [ Pg.154 ]




SEARCH



© 2024 chempedia.info