Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbed molecules characterization

Collectors ndFrothers. Collectors play a critical role ia flotation (41). These are heteropolar organic molecules characterized by a polar functional group that has a high affinity for the desired mineral, and a hydrocarbon group, usually a simple 2—18 carbon atom hydrocarbon chain, that imparts hydrophobicity to the minerals surface after the molecule has adsorbed. Most collectors are weak acids or bases or their salts, and are either ionic or neutral. The mode of iateraction between the functional group and the mineral surface may iavolve a chemical reaction, for example, chemisorption, or a physical iateraction such as electrostatic attraction. [Pg.412]

Conventionally RAIRS has been used for both qualitative and quantitative characterization of adsorbed molecules or films on mirror-like (metallic) substrates [4.265]. In the last decade the applicability of RAIRS to the quantitative analysis of adsorbates on non-metallic surfaces (e.g. semiconductors, glasses [4.267], and water [4.273]) has also been proven. The classical three-phase model for a thin isotropic adsorbate layer on a metallic surface was developed by Greenler [4.265, 4.272]. Calculations for the model have been extended to include description of anisotropic layers on dielectric substrates [4.274-4.276]. [Pg.250]

Adsorbents, and activated carbon in particular, are typically characterized by a highly porous structure. Adsorbents with the highest adsorption capacity for gasoline or fuel vapors have a large pore volume associated with pore diameters on the order of 50 Angstroms or less. When adsorption occurs in these pores, the process is comparable to condensation in which the pores become filled with hquid adsorbate. Fig. 5 depicts the adsorption process, including transfer of adsorbate molecules through the bulk gas phase to the surface of the solid, and diffusion onto internal surfaces of the adsorbent and into the pores. [Pg.247]

Adsorbed CO layers, bonding and Interactions, 559-61 Adsorbed molecules, vibrational analysis, 392-V03 Adsorbed species and processes on surfaces, IR spectroscopic characterizations, VOV-19 Adsorption... [Pg.597]

The adsorption action of activated carbon may be explained in terms of the surface tension (or energy per unit surface area) exhibited by the activated particles whose specific surface area is very large. The molecules on the surface of the particles are subjected to unbalanced forces due to unsatisfied bonds and this is responsible for the attachment of other molecules to the surface. The attractive forces are, however, relatively weak and short range, and are called Van der Waals forces, and the adsorption process under these conditions is termed as a physical adsorption (physisorption) process. In this case, the adsorbed molecules are readily desorbed from the surface. Adsorption resulting from chemical interaction with surface molecules is termed as chemisorption. In contrast to the physical process described for the adsorption on carbon, the chemisorption process is characterized by stronger forces and irreversibility. It may, however, be mentioned that many adsorption phenomena involve both physical and chemical processes. They are, therefore, not easily classified, and the general term, sorption, is used to designate the mechanism of the process. [Pg.507]

Many adsorbents, particularly the amorphous adsorbents, are characterized by their pore size distribution. The distribution of small pores is usually determined by analysis, using one of several available methods, of a cryogenic nitrogen adsorption isotherm, although other probe molecules are also used. The distribution of large pores is usually determined by mercury porisimetry [Gregg and Sing, gen. refs.]. [Pg.8]

Treating vibrational excitations in lattice systems of adsorbed molecules in terms of bound harmonic oscillators (as presented in Chapter III and also in Appendix 1) provides only a general notion of basic spectroscopic characteristics of an adsorbate, viz. spectral line frequencies and integral intensities. This approach, however, fails to account for line shapes and manipulates spectral lines as shapeless infinitely narrow and infinitely high images described by the Dirac -functions. In simplest cases, the shape of symmetric spectral lines can be characterized by their maximum positions and full width at half maximum (FWHM). These parameters are very sensitive to various perturbations and changes in temperature and can therefore provide additional evidence on the state of an adsorbate and its binding to a surface. [Pg.78]

State of the adsorbed molecules arid nature of the active sites The state of the adsorbed molecules will be characterized by the usual NMR parameters, i.e. chemical shift, linewidth and relaxation times. [Pg.106]

The first comparison is based on the T values of gaseous, liquid and adsorbed molecules. Unfortunately, no measurements are available for butenes in the gas or liquid phase. Nevertheless a reasonable parallel can be drawn with propylene where the three different phases were investigated (35) at 295 K for the gas (1 atm) Tj of C2 is 0.095 s in the liquid state (2.6. M in CDCI3) 59.9, 58.7 and 65.2 s for Cj, C2 and C3 respectively adsorbed on NaY zeolite 0.81, 1.6 and 0.81 s. The shortest relaxation times characterize the gas phase where the spin-rotation mechanism (NOE factor n = 0) is very effective (30,35). In the liquid, dipole-dipole and spin-rotation mechanisms both play a role and the total relaxation rate is about three orders of magnitude lower than in the gas phase. The adsorbed molecules show therefore an intermediate behaviour between gas and liquid, as it was also suggested by chemical shift data. [Pg.111]

Gas adsorption (physisorption) is one of the most frequently used characterization methods for micro- and mesoporous materials. It provides information on the pore volume, the specific surface area, the pore size distribution, and heat of adsorption of a given material. The basic principle of the methods is simple interaction of molecules in a gas phase (adsorptive) with the surface of a sohd phase (adsorbent). Owing to van der Waals (London) forces, a film of adsorbed molecules (adsorbate) forms on the surface of the solid upon incremental increase of the partial pressure of the gas. The amount of gas molecules that are adsorbed by the solid is detected. This allows the analysis of surface and pore properties. Knowing the space occupied by one adsorbed molecule, Ag, and the number of gas molecules in the adsorbed layer next to the surface of the solid, (monolayer capacity of a given mass of adsorbent) allows for the calculation of the specific surface area, As, of the solid by simply multiplying the number of the adsorbed molecules per weight unit of solid with the space required by one gas molecule ... [Pg.128]

Adsorption of a specific probe molecule on a catalyst induces changes in the vibrational spectra of surface groups and the adsorbed molecules used to characterize the nature and strength of the basic sites. The analysis of IR spectra of surface species formed by adsorption of probe molecules (e.g., CO, CO2, SO2, pyrrole, chloroform, acetonitrile, alcohols, thiols, boric acid trimethyl ether, acetylenes, ammonia, and pyridine) was reviewed critically by Lavalley (50), who concluded that there is no universally suitable probe molecule for the characterization of basic sites. This limitation results because most of the probe molecules interact with surface sites to form strongly bound complexes, which can cause irreversible changes of the surface. In this section, we review work with some of the probe molecules that are commonly used for characterizing alkaline earth metal oxides. [Pg.246]

For iron oxides, IR spectroscopy is useful as a means of identification. Hematite crystals in films that were too thin (<70nm) to be characterized by XRD were shown by IR to be oriented with the c-axis perpendicular to the surface of the film (Yubero et al. 2000). This technique also provides information about crystal morphology, degree of crystallinity and the extent of metal (especially Al) substitution because these properties can induce shifts in some of the IR absorption bands. It is also widely used both to obtain information about the vibrational state of adsorbed molecules (particularly anions) and hence the nature of surface complexes (see Chap. 11) and to investigate the nature of surface hydroxyl groups and adsorbed water (see Chap. 10). Typical IR spectra of the various iron oxides are depicted in Figure 7.1. Impurities arising either from the method of preparation or from adsorption of atmospheric compounds can produce distinct bands in the spectra of these oxides -namely at 1700 cm (oxalate), 1400 cm (nitrate) and 1300 and 1500 cm (carbonate). [Pg.141]

Asymmetry of the response curve to the point of the exposition end reflects the different nature of the exposition and relaxation output signals. A transition from an exposition into relaxation phase corresponds to a return of gas-sensitive matter contact with the initial atmosphere. A variety of processes take place simultaneously in that phase. They may include oxidation of adsorbed molecules by the air oxygen, desorption of the previously adsorbed molecules, competitive adsorption of the ambient atmosphere components. These circumstances cause a complicated shape of the relaxation curve. In general, its course reflects the dynamics of the surface concentration of conductivity clusters. Almost all relaxation curves are characterized by presence of a maximum. It is often more prominent that the corresponding exposition maximum. The origin of this phenomenon is determined by higher conductivity of clusters formed by the oxidized molecules of compounds adsorbed during the exposition phase. [Pg.71]

When the model does apply, the experimental value of m permits Asp to be evaluated if a0 is known, or a° to be evaluated if Asp is known. It is often difficult to decide what value of a0 best characterizes the adsorbed molecules at a solid surface. Sometimes, therefore, this method for determining Asp is calibrated by measuring ct° for the adsorbed molecules on a solid of known area, rather than relying on some assumed model for molecular orientation and cross section. [Pg.335]

Figure 9.17b schematically represents a cross-sectional view of the surface of a solid and represents the topmost layer of atoms by shaded circles. The open circles represent molecules in an ordered pattern on the solid substrate. Since the adsorbed molecules are ordered, their structure on the surface is characterized by what is called a supernet. Suppose we define <50 as the characteristic spacing of the substrate and 8S the equivalent quantity for the supernet. Then the two arrangements in Figure 9.17b are described by the ratios 5/60 = 4/1 and 8s/80 = 4/3. Building on the notion of reciprocal distances as developed in the discussion of Figure 9.15, it follows that the adsorbed layer with 8/80 = 4/1 should produce spots with a separation that is 1/4 that of the substrate. Likewise, for the case when 8s/80 = 4/3, a pattern of spots with a separation that is 3/4 that of the substrate is predicted. Thus, if the substrate produces spots at, say, 0 and 1, extra spots would be expected at 1/4, 2/4, and 3/4 for the 6/60 = 4 case, and at 3/4, 6/4, and 9/4 when 8s/80 = 4/3. The cases illustrated here are called coincident structures since the two patterns coincide periodically. When there is no correlation between two structures, they are said to be incoherent. [Pg.449]

The clusters are also very similar to each other in size, with an average area of 500 A. This area corresponds to a side length of a triangle of approximately 30 A, which corresponds well to the dimensions of the active clusters in typical HDS catalysts. As a model system for the HDS catalyst, the clusters are therefore a well-characterized reference for further experiments to elucidate details of the structure of the active edges and the reactivity with adsorbed molecules. [Pg.119]

The situation with the other metals is somewhat different. On Rh(100) at 6 = 0.5 a c2 x 2 structure is formed where the adsorbed molecules have been proposed to be located in fourfold sites as illustrated by Fig. 7a (89). Saturation of the adlayer is characterized by a split 2 x 1 structure that is repro-... [Pg.11]


See other pages where Adsorbed molecules characterization is mentioned: [Pg.720]    [Pg.16]    [Pg.720]    [Pg.16]    [Pg.575]    [Pg.2838]    [Pg.1500]    [Pg.18]    [Pg.249]    [Pg.259]    [Pg.199]    [Pg.110]    [Pg.376]    [Pg.105]    [Pg.118]    [Pg.33]    [Pg.38]    [Pg.52]    [Pg.51]    [Pg.9]    [Pg.132]    [Pg.343]    [Pg.345]    [Pg.210]    [Pg.198]    [Pg.137]    [Pg.8]    [Pg.317]    [Pg.122]    [Pg.96]    [Pg.116]    [Pg.279]    [Pg.20]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



Adsorbate molecules

Adsorbent molecule

Molecule adsorbed

© 2024 chempedia.info