Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecules representing

The first line of the connection table, called the counts line (see Figure 2-21), specifies how many atoms constitute the molecule represented by this file, how many bonds arc within the molecule, whether this molecule is chiral (1 in the chiral flag entry) or not, etc. The last-but-onc entry (number of additional properties) is no longer supported and is always set to 999. The last entry specifics the version of the Ctab format used in the current file. In the ease analyzed it is V2000". There is also a newer V3000 format, called the Extended Connection Table, which uses a different syntax for describing atoms and bonds [50. Because it is still not widely used, it is not covered here. [Pg.49]

Structural keys describe the chemical composition and structural motifs of molecules represented as a Boolean array. If a certain structural feature is present in a molecule or a substructure, a particular bit is set to 1 (true), otherwise to 0 (false). A bit in this array may encode a particular functional group (such as a carboxylic acid or an amidelinkage), a structural element (e.g., a substituted cyclohexane), or at least n occurrences of a particular element (e.g., a carbon atom). Alternatively, the structural key can be defined as an array of integers where the elements of this array contain the frequency of a specific feature in the molecule. [Pg.403]

In complex cases, the prefixes amino- and imino- may be changed to ammonio- and iminio- and are followed by the name of the molecule representing the most complex group attached to this nitrogen atom and are preceded by the names of the other radicals attached to this nitrogen. Finally the name of the anion is added separately. For example, the name might be 1-trimethylammonio-acridine chloride or 1-acridinyltrimethylammonium chloride. [Pg.28]

Molecules with two or more isolated chromophores (absorbing groups) absorb light of nearly the same wavelength as does a molecule containing only a single chromophore of a particular type. The intensity of the absorption is proportional to the number of that type of chromophore present in the molecule. Representative chromophores are given in Table 7.9. [Pg.707]

Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977]. Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977].
The relationship between what is recorded in a SSIMS spectrum and the chemical state of the surface is not as straightforward as in XPS and AES (Chap. 2). Because of the large number of molecular ions that occur in any SSIMS spectrum from a multi-component surface (e. g. during the study of a surface reaction), much chemical information is obviously available in SSIMS, potentially more than in XPS. The problem in using the information from a molecular ion lies in the uncertainty of knowing whether or not the molecule represents the surface composition. For some materials. [Pg.94]

Israelachvili and his colleagues have used the SEA to study the interactions between surface layers of surfactant and of other molecules representing functionalised polymer chains, adhesion promoters or additives. Typically a monolayer of the molecule concerned is deposited onto cleaved mica sheets. The values of surface energies obtained from the JKR equation (Eq. 18) throw some interesting light on the nature and roughness of surface layers in contact. [Pg.341]

Notice that the formula of a substance must be known to find its molar mass. It would be ambiguous, to say the least, to refer to the molar mass of hydrogen. One mole of hydrogen atoms, represented by the symbol H, weighs 1.008 g the molar mass of H is 1.008 g/mol. One mole of hydrogen molecules, represented by the formula H weighs 2.016 g the molar mass of H2 is 2.016 g/mol. [Pg.55]

In the present work a theory for the facile construction of complex molecular orbitals from bond and group orbitals is presented and complemented by accurate drawings of the valence molecular orbitals for over one hundred molecules representing a wide range of connectivities and functional groupings. Direct applications to phenomena in organic chemistry are also discussed. [Pg.312]

Centrosymmetric molecules represent a limiting case as far as molecular symmetry is concerned. They are highly symmetric molecules. At the other extreme, molecules with very low symmetry should produce a set of Raman frequencies very similar to the observed set of infrared frequencies. Between these two extremes there are cases where some vibrations are both Raman and infrared active and others are active in Raman or infrared but not in both. Nitrate ion is an example of a molecule in this intermediate class. [Pg.304]

FIGURE 19.2 The boiling points of ethers are lower than those of isomeric alcohols, because there is hydrogen bonding in alcohols but not in ethers. All the molecules represented here are unbranched. [Pg.875]

Bond Energies in Molecules Represented by a Single Electronic Structure... [Pg.131]

The submieroseopie level is further distinguished into one studying the properties of isolated molecules (represented at the highest level by quantum chemistry) and one studying the statistical behavior of large assembles of molecules (studied by the methods of statistical thermodynamics) (Ben-Zvi, Silberstein, Mamlok, 1990). [Pg.109]

The simplest and fastest techniques for grouping molecules are partitioning methods. Every molecule is represented by a point in an n-dimensional space, the axes of which are defined by the n components of the descriptor vector. The range of values for each component is then subdivided into a set of subranges (or bins). As a result, the entire multidimensional space is partitioned into a number of hypercubes (or cells) of fixed size, and every molecule (represented as a point in this space) falls into one of these cells [57]. [Pg.363]

The problem states that each molecule represents a partial pressure of 1.0 bar, so we can determine the equilibrium concentrations of each reagent by counting molecules in the molecular picture (PAB2)gq = 4.0 bar CPA)eq =1-0 bar (i5AB)eq =4.0 bar... [Pg.1167]

The molecular view represents a set of initial conditions for the reaction described in Example. Each molecule represents a partial pressure of 1.0 bar. Determine the equilibrium conditions and redraw the picture to illustrate those conditions. [Pg.1170]

The estimation of f from Stokes law when the bead is similar in size to a solvent molecule represents a dubious application of a classical equation derived for a continuous medium to a molecular phenomenon. The value used for f above could be considerably in error. Hence the real test of whether or not it is justifiable to neglect the second term in Eq. (19) is to be sought in experiment. It should be remarked also that the Kirkwood-Riseman theory, including their theory of viscosity to be discussed below, has been developed on the assumption that the hydrodynamics of the molecule, like its thermodynamic interactions, are equivalent to those of a cloud distribution of independent beads. A better approximation to the actual molecule would consist of a cylinder of roughly uniform cross section bent irregularly into a random, tortuous configuration. The accuracy with which the cloud model represents the behavior of the real polymer chain can be decided at present only from analysis of experimental data. [Pg.610]

According to this partisan view of the evolution of theoretical chemistry we draw the impression of a choice, in which the single molecules represent the basic unit of investigation, the quantum theory provide the theoretical basis, and computer calculations the final step. The three periods of growth are, in reality related, and the " sudden" changes in between do not corresponds to "revolutions" in according to the meaning this word has in the Kuhn s analysis [4]. [Pg.2]

The perturbation theory is the convenient starting point for the determination of the polarizability from the Schrodinger equation, restricted to its electronic part and the electric dipole interaction regime. The Stark Hamiltonian —p. describes the dipolar interaction between the electric field and the molecule represented by its... [Pg.262]

Porter has termed these transitions charge-transfer excitations (CT). Possible one-electron contributions to the excitation of a molecule represented as DRA (D, donor R, chromophore A, acceptor) are... [Pg.315]

EXAMPLE 21.2. Write structural formulas for the molecules represented by the following formulas (a) C2H4 and (b) CH3COCH,. [Pg.319]

The molecular mechanics method, often likened to a ball and spring model of the molecule, represents the total energy of a system of molecules with a set of simple analytical functions representing different interactions between bonded and non-bonded atoms, as shown schematically in Figure 1. [Pg.691]


See other pages where Molecules representing is mentioned: [Pg.67]    [Pg.27]    [Pg.26]    [Pg.275]    [Pg.435]    [Pg.21]    [Pg.125]    [Pg.10]    [Pg.588]    [Pg.348]    [Pg.34]    [Pg.191]    [Pg.852]    [Pg.301]    [Pg.307]    [Pg.256]    [Pg.555]    [Pg.599]    [Pg.43]    [Pg.108]    [Pg.112]    [Pg.548]    [Pg.256]    [Pg.252]    [Pg.95]    [Pg.195]    [Pg.322]    [Pg.132]    [Pg.370]   
See also in sourсe #XX -- [ Pg.35 , Pg.36 , Pg.37 ]




SEARCH



L-Dopa—A Representative Organic Molecule

Organic chemistry representing molecules

Representing Organic Molecules

Some Representative Organic Molecules

© 2024 chempedia.info