Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile effects

Jaeger RJ, Cote IL, Rogers AE, et al. 1984. Acute toxicity of acrylonitrile Effect of diet on tissue nonprotein sulfhydryl content and distribution of 1- -acrylonitrile or its metabolites. J Am Coll Toxicol 3 93-102. [Pg.111]

Michael additions of C-nudeophiles such as the indanone 1 have been the subject of numerous further studies For example, the reaction between the indanone 1 and methyl vinyl ketone was effected by a solid-phase-bound quinine derivative in 85% yield and with remarkable 87% ee by d Angelo, Cave et al. [5], Co-polymers of cinchona alkaloids with acrylonitrile effected the same transformation Kobaya-shi and Iwai [6a] achieved 92% yield and 42% ee and Oda et al. [6b] achieved almost quantitative yield and up to 65% ee. Similarly, partially resolved 2-(hydroxy-methyl)quinudidine was found to catalyze the reaction between 1 and acrolein and a-isopropyl acrolein with induction of asymmetry, but no enantiomeric excesses were determined [7]. As shown in Scheme 4.4, the indanone 7 could be added to MVK with up to 80% ee under phase-transfer conditions, by use of the Cinchona-derived PT-catalysts 9a and 9b, affording the Michael-product 8 or enf-8, respectively [8]. The adducts 8 or ent-8 were intermediates in the stereoselective Robinson anellation of a cydohexenone ring to the indanone 7 [8],... [Pg.47]

Dir, whereas for small distances d < r), /r Did. The large effective obtainable enables fast heterogeneous reaction rates to be measured under steady-state conditions. Zhou and Bard measured a rate constant of 6 x 10 Ms for the electro-hydrodimerization of acrylonitrile (AN) and observed the short-lived intennediate AN for this process [65]. [Pg.1942]

Residual monomers in the latex are avoided either by effectively reacting the monomers to polymer or by physical or chemical removal. The use of tert-huty peroxypivalate as a second initiator toward the end of the polymeri2ation or the use of mixed initiator systems of K2S20g and tert-huty peroxyben2oate (56) effectively increases final conversion and decreases residual monomer levels. Spray devolatili2ation of hot latex under reduced pressure has been claimed to be effective (56). Residual acrylonitrile also can be reduced by postreaction with a number of agents such as monoamines (57) and dialkylamines (58), ammonium—alkali metal sulfites (59), unsaturated fatty acids or their glycerides (60,61), their aldehydes, esters of olefinic alcohols, cyanuric acid (62,63), andmyrcene (64). [Pg.194]

SAN resins themselves appear to pose few health problems in that they have been approved by the EDA for beverage botde use (149). The main concern is that of toxic residuals, eg, acrylonitrile, styrene, or other polymerization components such as emulsifiers, stabilizers, or solvents. Each component must be treated individually for toxic effects and safe exposure level. [Pg.197]

Examination of oven-aged samples has demonstrated that substantial degradation is limited to the outer surface (34), ie, the oxidation process is diffusion limited. Consistent with this conclusion is the observation that oxidation rates are dependent on sample thickness (32). Impact property measurements by high speed puncture tests have shown that the critical thickness of the degraded layer at which surface fracture changes from ductile to brittle is about 0.2 mm. Removal of the degraded layer restores ductiHty (34). Effects of embrittled surface thickness on impact have been studied using ABS coated with styrene—acrylonitrile copolymer (35). [Pg.203]

Monomer compositional drifts may also occur due to preferential solution of the styrene in the mbber phase or solution of the acrylonitrile in the aqueous phase (72). In emulsion systems, mbber particle size may also influence graft stmcture so that the number of graft chains per unit of mbber particle surface area tends to remain constant (73). Factors affecting the distribution (eg, core-sheU vs "wart-like" morphologies) of the grafted copolymer on the mbber particle surface have been studied in emulsion systems (74). Effects due to preferential solvation of the initiator by the polybutadiene have been described (75,76). [Pg.203]

Nitrile Rubber. Nitrile mbbers are made by the emulsion copolymerization of acrylonitrile (9—50%) and butadiene (6) and designated NBR. The ratio of acrylonitrile (ACN) to butadiene has a direct effect on the properties on the nature of the polymers. As the ACN content increases, the oil resistance of the polymer increases (7). As the butadiene content increases, the low temperature properties of the polymer are improved (see Elastomers, SYNTHETIC-NITRILE RUBBER). [Pg.232]

Styrene readily copolymerizes with many other monomers spontaneously. The styrene double bond is electronegative on account of the donating effect of the phenyl ring. Monomers that have electron-withdrawiag substituents, eg, acrylonitrile and maleic anhydride, tend to copolymerize most readily with styrene because their electropositive double bonds are attached to the electronegative styrene double bond. Spontaneous copolymerization experiments of many different monomer pair combiaations iadicate that the mechanism of initiation changes with the relative electronegativity difference between the monomer pairs (185). [Pg.519]

Other important uses of stannic oxide are as a putty powder for polishing marble, granite, glass, and plastic lenses and as a catalyst. The most widely used heterogeneous tin catalysts are those based on binary oxide systems with stannic oxide for use in organic oxidation reactions. The tin—antimony oxide system is particularly selective in the oxidation and ammoxidation of propylene to acrolein, acryHc acid, and acrylonitrile. Research has been conducted for many years on the catalytic properties of stannic oxide and its effectiveness in catalyzing the oxidation of carbon monoxide at below 150°C has been described (25). [Pg.65]

Fig. 3. Effect of comonomer stmcture on the glass-transition temperature of VDC copolymers (72), where A represents acrylonitrile B, methyl acrylate ... Fig. 3. Effect of comonomer stmcture on the glass-transition temperature of VDC copolymers (72), where A represents acrylonitrile B, methyl acrylate ...
The dynamic mechanical properties of VDC—VC copolymers have been studied in detail. The incorporation of VC units in the polymer results in a drop in dynamic modulus because of the reduction in crystallinity. However, the glass-transition temperature is raised therefore, the softening effect observed at room temperature is accompanied by increased brittleness at lower temperatures. These copolymers are normally plasticized in order to avoid this. Small amounts of plasticizer (2—10 wt %) depress T significantly without loss of strength at room temperature. At higher levels of VC, the T of the copolymer is above room temperature and the modulus rises again. A minimum in modulus or maximum in softness is usually observed in copolymers in which T is above room temperature. A thermomechanical analysis of VDC—AN (acrylonitrile) and VDC—MMA (methyl methacrylate) copolymer systems shows a minimum in softening point at 79.4 and 68.1 mol % VDC, respectively (86). [Pg.434]

A.C7ylonitnk Content. Standard grades available ia the market contain between 15 to 50% acrylonitrile. The acrylonitrile content of nitrile mbber has a significant effect on two properties chemical resistance and low temperature performance. As the acrylonitrile content of the polymer is iacreased, the chemical resistance is improved whereas the low temperature properties are diminished. [Pg.522]

So the results obtained by different groups and with different methods display the existence of a completely unusual chemical conversion, polymerization at very low temperatures. Similar effects have been found in y-irradiated acrylonitrile and acrolein [Gerasimov et al. 1980]. [Pg.129]

Figure 16.14. Effect of cross-linking agent on impact strength of 75/25 styrene-acrylonitrile/ nitrile... Figure 16.14. Effect of cross-linking agent on impact strength of 75/25 styrene-acrylonitrile/ nitrile...
Simple alkyl radicals such as methyl are considered to be nonnucleophilic. Methyl radicals are somewhat more reactive toward alkenes bearing electron-withdrawing substituents than towards those with electron-releasing substituents. However, much of this effect can be attributed to the stabilizing effect that these substiments have on the product radical. There is a strong correlation of reaction rate with the overall exothermicity of the reaction. Hydroxymethyl and 2-hydroxy-2-propyl radicals show nucleophilic character. The hydroxymethyl radical shows a slightly enhanced reactivity toward acrylonitrile and acrolein, but a sharply decreased reactivity toward ethyl vinyl ether. Table 12.9 gives some of the reactivity data. [Pg.701]

Nitrile rubber/phenolic resin blends. Blends of equal parts by weight of a nitrile rubber and a phenolic resin in methyl ethyl ketone (at a 20-30 wt% total solids content) is suitable for many adhesive purposes. The more phenolic resin in the formulation, the greater the bond strength and brittleness of the NBR adhesive [67]. Table 10 shows the effect of phenolic resin on nitrile rubber properties. On the other hand, the higher the acrylonitrile content in the rubber. [Pg.659]

For the ordinary Diels-Alder reaction the dienophile preferentially is of the electron-poor type electron-withdrawing substituents have a rate enhancing effect. Ethylene and simple alkenes are less reactive. Substituent Z in 2 can be e.g. CHO, COR, COOH, COOR, CN, Ar, NO2, halogen, C=C. Good dienophiles are for example maleic anhydride, acrolein, acrylonitrile, dehydrobenzene, tetracya-noethylene (TCNE), acetylene dicarboxylic esters. The diene preferentially is of the electron-rich type thus it should not bear an electron-withdrawing substituent. [Pg.92]


See other pages where Acrylonitrile effects is mentioned: [Pg.493]    [Pg.187]    [Pg.493]    [Pg.187]    [Pg.130]    [Pg.137]    [Pg.862]    [Pg.182]    [Pg.186]    [Pg.192]    [Pg.197]    [Pg.233]    [Pg.275]    [Pg.278]    [Pg.278]    [Pg.279]    [Pg.282]    [Pg.167]    [Pg.492]    [Pg.519]    [Pg.267]    [Pg.431]    [Pg.437]    [Pg.204]    [Pg.100]    [Pg.5]    [Pg.443]    [Pg.4]    [Pg.34]    [Pg.87]    [Pg.332]   
See also in sourсe #XX -- [ Pg.345 ]




SEARCH



Acrylonitrile copolymerization solvent effects

Acrylonitrile grafting effect

Acrylonitrile health effects

Acrylonitrile polymerization solvent effects

Acrylonitrile reproductive effects

Acrylonitrile, reaction solvent effects

© 2024 chempedia.info