Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile-butadiene-unsaturated

Styrene [100-42-5] (phenylethene, viaylben2ene, phenylethylene, styrol, cinnamene), CgH5CH=CH2, is the simplest and by far the most important member of a series of aromatic monomers. Also known commercially as styrene monomer (SM), styrene is produced in large quantities for polymerization. It is a versatile monomer extensively used for the manufacture of plastics, including crystalline polystyrene, mbber-modifted impact polystyrene, expandable polystyrene, acrylonitrile—butadiene—styrene copolymer (ABS), styrene—acrylonitrile resins (SAN), styrene—butadiene latex, styrene—butadiene mbber (qv) (SBR), and unsaturated polyester resins (see Acrylonithile polya rs Styrene plastics). [Pg.476]

We have considerable latitude when it comes to choosing the chemical composition of rubber toughened polystyrene. Suitable unsaturated rubbers include styrene-butadiene copolymers, cis 1,4 polybutadiene, and ethylene-propylene-diene copolymers. Acrylonitrile-butadiene-styrene is a more complex type of block copolymer. It is made by swelling polybutadiene with styrene and acrylonitrile, then initiating copolymerization. This typically takes place in an emulsion polymerization process. [Pg.336]

Engineering polymers are often used as a replacement for wood and metals. Examples include polyamides (PA), often called nylons, polyesters (saturated and unsaturated), aromatic polycarbonates (PCs), polyoxymethylenes (POMs), polyacrylates, polyphenylene oxide (PPO), styrene copolymers, e.g., styrene/ acrylonitrile (SAN) and acrylonitrile/butadiene/styrene (ABS). Many of these polymers are produced as copolymers or used as blends and are each manufactured worldwide on the 1 million tonne scale. [Pg.66]

Uses Production of isooctane, butyl rubber, polyisobutene resins, high octane aviation fuels, tert-butyl chloride, ferf-butyl methacrylates copolymer resins with acrylonitrile, butadiene, and other unsaturated hydrocarbons organic synthesis. [Pg.810]

Emulsion polymerization is used for 10-15% of global polymer production, including such industrially important polymers as poly(acrylonitrile-butadiene-styrene) (ABS), polystyrene, poly(methyl methacrylate), and poly (vinyl acetate) [196]. These are made from aqueous solutions with high concentrations of suspended solids. The important components have unsaturated carbon-carbon double bonds. Raman spectroscopy is well-suited to address these challenges, though the heterogeneity of the mixture sometimes presents challenges. New sample interfaces, such as WAI and transmission mode, that have shown promise in pharmaceutical suspensions are anticipated to help here also. [Pg.222]

An example of this type of a safer chemical is methacrylonitrile (1) compared with acrylonitrile (2) (Figure 1.1). Both compounds are a, 3-unsaturated aliphatic nitriles, and structurally very similar, but 2 causes cancer whereas 1 does not appear to do so. Among other applications, 2 is used in the production of acrylic and modacrylic fibers, elastomers, acrylonitrile-butadiene-styrene and styrene-acrylonitrile resins, nitrile rubbers, and gas barrier resins. In a study conducted by the US National Toxicology Program (NTP) in which 2 was administered orally to mice for 2 years, there was clear evidence that it caused cancer in the treated mice (in addition to causing other toxic effects), and is classified by the NTP as a probable human carcinogen [26]. [Pg.12]

Z. Zhou, N. Liu, and H. Huang, Reactivity of acrylonitrile-butadiene-styrene terpolymer grafted with long-chain unsaturated carboxylic acids, Polymer, 45(21) 7109-7116, September 2004. [Pg.259]

Copolymers of itaconic esters with butadiene have not yet been used technically. On the other hand, acrylonitrile containing copolymers with other components have been studied from several points of view. Standard Oil Co. has claimed a terpolymer of isobutylene, butadiene, and acrylonitrile, and BASF a similar product of butadiene, acrylonitrile, and styrene. The films from these combinations are said to have high flexibility and cold resistance. However, all butadiene containing copolymers are not light fast. Copolymers of butadiene, acrylonitrile, and unsaturated dicarboxylic esters are suggested for plasticizing PVC, but they must be thermally degraded before they are combined with the polymer. [Pg.99]

Note ABS, acrylonitrile/butadiene/styrene EPS, expandable polystyrene HIPS, high-impact polystyrene PA, polyamide PBT, poly(butylene)terephthalate PC, polycarbonate PE, polyethylene PET, poly(ethylene)terephthalate PP, polypropylene PUR, polyurethane PVC, polyvinylchloride UPE, unsaturated polyester Textile, textile application. [Pg.101]

VTBNX (acrylonitrile-butadiene with unsaturated end groups). [Pg.107]

Antioxidants. Certain components of heat stabilizers (polyols, phosphites) also serve as antioxidants. The protection against oxidative attack is not as great in PVC as it is in certain ethylenically unsaturated materials. However, PVC compounds may require protection in the high-temperature service as in electrical wire insulation bisphenol A is often incorporated into the plasticizer for this purpose. Impact modifiers containing unsaturation such as acrylonitrile-butadiene-styrene polymers often require antioxidant protection. Hindered phenols such as butylated hydroxytoluene are often used for this purpose, especially when outdoor applications are involved. [Pg.434]

Like impact polystyrene, acrylonitrile-butadiene-styrene copolymers (ABS) are sensitive to oxidation caused by the unsaturation of the elastomeric component. The processes for the manufacture of ABS require the drying (at 100°C-150°C) of powdery polymers that are extremely sensitive to oxidation. Thus, antioxidants have to be added before the coagulation step, normally in emulsified form, although sometimes in solution. The primary antioxidants are frequently sued together with a synergist. Primary anti-oxidants commonly used for ABS are BHT, 2,2 -methylenebis-(4-ethyl or methyl-6-tert-hutyl-phenol), 2,2 -methylenebis-(4-methyl-6-cyclohexyl-phenol), 2,2 -methylenehis-(4-methyl-6-nonyl-phenol), octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate, and l,l,3-tris-(5-tert-hutyl-4-hydroxy-2-methylphenyl)-butane. Important synergists are tris-(nonyl-phenyl)-phosphite and dilauryl thiodipropionate. These antioxidants are either liquids or show comparatively low melting points, which is an important prerequisite for the formation of stable emulsions. [Pg.109]

Tritolyl phosphate (TTP) has been examined as a pretreatment for E-glass in epoxide laminates and thermoplastic adhesives for bonding poly(vinyl chloride) to aluminum, steel to zinc, and acrylonitrile butadiene styrene to aluminum [59]. Mono- and diphosphate esters have been claimed to be suitable adhesion-promoting primers for acrylic adhesives on metal [60,61], unsaturated acid phosphates have been suggested as primers for use on metals to be bonded with free radical initiated adhesives [42], and thiopho-sphate esters have been suggested for adhesives to be used on plastics, ceramics, and metals [62]. [Pg.221]

The term styrenic describes the family of major plastic products that use styrene as their key building-block PS, expanded polystyrene (EPS), acrylonitrile-butadiene-styrene copolymer (ABS), styrene-acrylonitrile copolymer (SAN), styrene-butadiene rubber (SBR) and unsaturated polyester resin (UP). Among these, UP is the only thermoset and will... [Pg.76]

All TP or TS matrix property can be improved or changed to meet varying requirements by using reinforcements. Typical thermoplastics used include TP polyesters, polyethylenes (PEs), nylons (polyamides/ PAs), polycarbonates (PCs), TP polyurethanes (PURs), acrylics (PMMAs), acetals (polyoxymethylenes/POMs), polypropylenes (PPs), acrylonitrile butadienes (ABSs), and fluorinated ethylene propylenes (FEPs). The thermoset plastics include TS polyesters (unsaturated polyesters), epoxies (EPs), TS polyurethanes (PURs), diallyl phthalates (DAPs), phenolics (phenol formaldehydes/PFs), silicones (Sis), and melamine formaldehydes (MFs). RTSs predominate for the high performance applications with RTFs fabricating more products. The RTPs continue to expand in the electronic, automotive, aircraft, underground pipe, appliance, camera, and many other products. [Pg.14]

It is proposed that this is due to attack of carbonyl oxides, in their biradical form, on the rubber double bonds. Typical diene rubbers (polyisoprene and polybutadiene) have rate constants several orders of magnitude greater than polymers having a saturated backbone (polyolefins). Other unsaturated elastomers having high reaction rates with ozone include styrene-butadiene (SBR) and acrylonitrile-butadiene (NBR) rubbers. As an example, Polychloroprene (CR) is less reactive than other diene rubbers, and it is therefore inherently more resistant to attack by ozone. [Pg.198]

Before reviewing in detail the fundamental aspects of elastomer blends, it would be appropriate to first review the basic principles of polymer science. Polymers fall into three basic classes plastics, fibers, and elastomers. Elastomers are generally unsaturated (though can be saturated as in the case of ethylene-propylene copolymers or polyisobutylene) and operate above their glass transition temperature (Tg). The International Institute of Synthetic Rubber Producers has prepared a list of abbreviations for all elastomers [3], For example, BR denotes polybutadiene, IRis synthetic polyisoprene, and NBR is acrylonitrile-butadiene rubber (Table 4.1). There are also several definitions that merit discussion. The glass transition temperature (Tg) defines the temperature at which an elastomer undergoes a transition from a rubbery to a glassy state at the molecular level. This transition is due to a cessation of molecular motion as temperature drops. An increase in the Tg, also known as the second-order transition temperature, leads to an increase in compound hysteretic properties, and in tires to an improvement in tire traction... [Pg.164]

The unsaturated double bonds in diene-based mbbers allow vulcanisation (237) in the same manner as natural mbber. Inorganic filler materials are often used to enhance the mechanical properties of synthetic mbbers. Some special purpose diene-based mbbers, such as polychloroprene (325) and acrylonitrile-butadiene, are formulated to contain additional chemical elements in the polymer chain (chlorine and nitrogen, respectively) to improve chemical resistance properties. [Pg.24]

Figure 1 Cost-related (specific) flexural strength of major thermoplastics, versus cost-related (specific) thermal tolerance. The unit cost is the market price in US cents (1992) of 1 cm plastics. The thermal tolerance is the temperature difference (AT) over room temperature (AT — T - room T), by which temperature (7 ) the flexural modulus is equal to 1 GPa. Designations, abbreviations WFRP-S, wood fiber reinforced PP (S type) of AECL, Canada (See Table 1) PMMA, polymethylmethacrylate PVC, pol)winyl chloride PS, polystyrene PP, polypropylene UP, unsaturated polyesters PA-GF, glass fiber (35%) reinforced polyamide PHR, phenolic resin EP, epoxy resin ABS, acrylonitrile/butadiene/styrene copolymer UF, urea/formaldehyde LDPE, low density polyethylene PC, polycarbonate POM, polyoxymethylene CAB, cellulose acetate butyrate LCP, liquid crystal polymers PEEK, polyether-etherketone PTFE, polytetrafluorethylene. Figure 1 Cost-related (specific) flexural strength of major thermoplastics, versus cost-related (specific) thermal tolerance. The unit cost is the market price in US cents (1992) of 1 cm plastics. The thermal tolerance is the temperature difference (AT) over room temperature (AT — T - room T), by which temperature (7 ) the flexural modulus is equal to 1 GPa. Designations, abbreviations WFRP-S, wood fiber reinforced PP (S type) of AECL, Canada (See Table 1) PMMA, polymethylmethacrylate PVC, pol)winyl chloride PS, polystyrene PP, polypropylene UP, unsaturated polyesters PA-GF, glass fiber (35%) reinforced polyamide PHR, phenolic resin EP, epoxy resin ABS, acrylonitrile/butadiene/styrene copolymer UF, urea/formaldehyde LDPE, low density polyethylene PC, polycarbonate POM, polyoxymethylene CAB, cellulose acetate butyrate LCP, liquid crystal polymers PEEK, polyether-etherketone PTFE, polytetrafluorethylene.
Figure 1 Polymer interpretation chart. PAI, polyamideimide PC, polycarbonate UP, unsaturated polyester PDAP, diarylate phtalate resin VC-VAc, vinyl chloride-vinyl acetate copolymer PVAc, polyvinyl acetate PVFM, polyvinyl formal PUR, polyurethane PA, polyamide PMA, methacrylate ester polymer EVA, ethylene-vinyl acetate copolymer PF, phenol resin EP, epoxide resin PS, polystyrene ABS, acrylonitrile-butadiene-styrene copolymer PPO, polyphenylene oxide P-SULFONE, poly-sulfone PA, polyamide UF, urea resin CN, nitrocellulose PVA, polyvinyl acetate MC, methyl cellulose MF, melamine resin PAN, polyacrylonitrile PVC, polyvinyl chloride PVF, polyvinyl fluoride CR, polychloroprene CHR, polyepichlorohydrin SI, polymethylsiloxane POM, polyoxy-methylene PTFE, polytetrafluoroethylene MOD-PP, modified PP EPT, ethylene-propylene terpolymer EPR, ethylene-propylene rubber PI, polyisoprene BR, butyl rubber PMP, poly(4-methyl pentene-1) PE, poly(ethylene) PB, poly(butene-l). (Adapted from Ref. 22, p. 50.)... Figure 1 Polymer interpretation chart. PAI, polyamideimide PC, polycarbonate UP, unsaturated polyester PDAP, diarylate phtalate resin VC-VAc, vinyl chloride-vinyl acetate copolymer PVAc, polyvinyl acetate PVFM, polyvinyl formal PUR, polyurethane PA, polyamide PMA, methacrylate ester polymer EVA, ethylene-vinyl acetate copolymer PF, phenol resin EP, epoxide resin PS, polystyrene ABS, acrylonitrile-butadiene-styrene copolymer PPO, polyphenylene oxide P-SULFONE, poly-sulfone PA, polyamide UF, urea resin CN, nitrocellulose PVA, polyvinyl acetate MC, methyl cellulose MF, melamine resin PAN, polyacrylonitrile PVC, polyvinyl chloride PVF, polyvinyl fluoride CR, polychloroprene CHR, polyepichlorohydrin SI, polymethylsiloxane POM, polyoxy-methylene PTFE, polytetrafluoroethylene MOD-PP, modified PP EPT, ethylene-propylene terpolymer EPR, ethylene-propylene rubber PI, polyisoprene BR, butyl rubber PMP, poly(4-methyl pentene-1) PE, poly(ethylene) PB, poly(butene-l). (Adapted from Ref. 22, p. 50.)...
NMR spectroscopy is capable of distinguishing between the different types of NMR unsaturation that can occur in a polymer. NMR spectroscopy has been used to determine unsaturation in acrylonitrile-butadiene-styrene terpolymers (ABS) [33, 34], 1,2-polybutadiene [34, 35], ethylene-propylene terpolymers [35], and vinyl chloride-vinylidene chloride copolymers [10, 36, 37]. [Pg.89]

The natural rubber does not generally exhibit all the desired properties for use in the rubber industry. Thus, it is possible to obtain better mechanical and physical properties at a lower cost by blending natural rubber with synthetic rubbers. Normally, natural rubber is deteriorated by ozone and thermal attacks due to its highly unsaturated backbone, and it also shows low oil and chemical resistances due to its non-polarity. However, these properties can be achieved by blending it with low unsaturated ethylene propylene diene monomer rubber, styrene butadiene rubber, carboxylate styrene butadiene rubber, nitrile butadiene rubber, chloroprene rubber, chlorosulfonated polyethylene rubber, and acrylonitrile butadiene rubber. [Pg.514]

Hydrogenated acrylonitrile-butadiene robber (HNBR)-Therban 3407, containing 34 % of acrylonitrile units and residual double bonds max 0.9 %, Mooney viscosity 70 was purchased from Lanxess. Dicumyl peroxide obtained from Aldrich was used as cross-linker. Co-agents consisted of nanostructured metal oxides magnesium, zinc or calcium oxide provided by Aldrich and unsaturated acids acrylic acid (Aldrich) or monoallyl maleate (synthesized by Department of Organic Chemistry- Technical University of Lodz). The composition of a typical elastomer blend was HNBR-100 phr, DCP- 3 phr, metal oxide- 3 phr, unsaturated acid-1 phr. [Pg.147]

In this chapter the homopolymer, polystyrene, is considered together with styrene-acrylonitrile copolymers, acrylonitrile-butadiene-styrene copolymers and styrene-a-methylstyrene copolymers. The important styrene-butadiene copolymers are described with other diene polymers in Chapter 18. The use of styrene in the cross-linking of unsaturated polyesters is described in Chapter 10. [Pg.71]

Plastic is a material that can be plasticized into certain shapes under certain conditions (temperature, pressure, etc.) and can keep its shape unchanged at room temperature and normal atmosphere pressure. According to their performance after heat treatment, plastics can be divided into thermoplastic and thermosetting plastics. A thermoplastic plastic is generally a linear or branched polymer. It melts when heated and solidifies when cooled, and this kind of behavior can be repeated, so the plastic can be used multiple times. The main varieties are polyethylene, polypropylene, polyvinyl chloride, polystyrene, and acrylonitrile-butadiene-styrene terpolymer. Thermosetting plastic is a space network polymer, which is formed by direct polymerization of monomers or by cross-linking of linear prepolymers. Once the solidification is finished, the polymer cannot be heated back to the plasticizing state. The main varieties are phenolic resin, epoxy resin, amino resin, and unsaturated polyester. [Pg.13]

NMR spectroscopy has been used to determine unsaturation in acrylonitrile-butadiene-styrene terpolymers [107], ethylene-propylene-diene terpolymers [108] and 1,2-polybutadiene [105]. [Pg.93]

The peak intensity of the unsaturated hydrocarbon Cy-MN(A) i.e., CH2 = CH(CH2)4 - C = N obtained by Py-GC provided a practical calibration curve applicable to ever highly hydrogenated acrylonitrile-butadiene copolymers. [Pg.186]


See other pages where Acrylonitrile-butadiene-unsaturated is mentioned: [Pg.277]    [Pg.560]    [Pg.780]    [Pg.939]    [Pg.341]    [Pg.1077]    [Pg.395]    [Pg.548]    [Pg.84]    [Pg.153]    [Pg.167]    [Pg.1221]    [Pg.119]    [Pg.968]    [Pg.611]    [Pg.632]    [Pg.373]    [Pg.202]   


SEARCH



Butadiene-acrylonitrile

© 2024 chempedia.info