Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile-butadiene-styrene processing

In the case of poly(vinyl chloride) plastics, the FWA is mixed dry with the PVC powder before processing or dissolved in the plasticising agent (see Vinyl polymers). Polystyrene, acrylonitrile—butadiene—styrene (ABS), and polyolefin granulates are powdered with FWA prior to extmsion (2,78) (see... [Pg.120]

Acrylonitrile—Butadiene—Styrene. ABS is an important commercial polymer, with numerous apphcations. In the late 1950s, ABS was produced by emulsion grafting of styrene-acrylonitrile copolymers onto polybutadiene latex particles. This method continues to be the basis for a considerable volume of ABS manufacture. More recently, ABS has also been produced by continuous mass and mass-suspension processes (237). The various products may be mechanically blended for optimizing properties and cost. Brittle SAN, toughened by SAN-grafted ethylene—propylene and acrylate mbbets, is used in outdoor apphcations. Flame retardancy of ABS is improved by chlorinated PE and other flame-retarding additives (237). [Pg.419]

Rubber-Modified Copolymers. Acrylonitrile—butadiene—styrene polymers have become important commercial products since the mid-1950s. The development and properties of ABS polymers have been discussed in detail (76) (see Acrylonitrile polymers). ABS polymers, like HIPS, are two-phase systems in which the elastomer component is dispersed in the rigid SAN copolymer matrix. The electron photomicrographs in Figure 6 show the difference in morphology of mass vs emulsion ABS polymers. The differences in stmcture of the dispersed phases are primarily a result of differences in production processes, types of mbber used, and variation in mbber concentrations. [Pg.508]

ABS (acrylonitrile—butadiene-styrene) resins are two-phase blends. These are prepared by emulsion polymerization or suspension grafting polymerization. Products from the former process contain 20—22% butadiene those from the latter, 12—16%. [Pg.346]

Chemical reduction is used extensively nowadays for the deposition of nickel or copper as the first stage in the electroplating of plastics. The most widely used plastic as a basis for electroplating is acrylonitrile-butadiene-styrene co-polymer (ABS). Immersion of the plastic in a chromic acid-sulphuric acid mixture causes the butadiene particles to be attacked and oxidised, whilst making the material hydrophilic at the same time. The activation process which follows is necessary to enable the subsequent electroless nickel or copper to be deposited, since this will only take place in the presence of certain catalytic metals (especially silver and palladium), which are adsorbed on to the surface of the plastic. The adsorbed metallic film is produced by a prior immersion in a stannous chloride solution, which reduces the palladium or silver ions to the metallic state. The solutions mostly employed are acid palladium chloride or ammoniacal silver nitrate. The etched plastic can also be immersed first in acidified palladium chloride and then in an alkylamine borane, which likewise form metallic palladium catalytic nuclei. Colloidal copper catalysts are of some interest, as they are cheaper and are also claimed to promote better coverage of electroless copper. [Pg.436]

Thorough rinsing between the pretreatment steps is essential to prevent carry-over of solutions. The commonest plastic plated is ABS (acrylonitrile butadiene styrene copolymer) but procedures are also available for polypropylene and other plastics. In some proprietary processes, electroless copper solutions are used to give the initial thin conducting layer. [Pg.536]

This comprehensive article supplies details of a new catalytic process for the degradation of municipal waste plastics in a glass reactor. The degradation of plastics was carried out at atmospheric pressure and 410 degrees C in batch and continuous feed operation. The waste plastics and simulated mixed plastics are composed of polyethylene, polypropylene, polystyrene, polyvinyl chloride, acrylonitrile butadiene styrene, and polyethylene terephthalate. In the study, the degradation rate and yield of fuel oil recovery promoted by the use of silica alumina catalysts are compared with the non-catalytic thermal degradation. 9 refs. lAPAN... [Pg.65]

We have considerable latitude when it comes to choosing the chemical composition of rubber toughened polystyrene. Suitable unsaturated rubbers include styrene-butadiene copolymers, cis 1,4 polybutadiene, and ethylene-propylene-diene copolymers. Acrylonitrile-butadiene-styrene is a more complex type of block copolymer. It is made by swelling polybutadiene with styrene and acrylonitrile, then initiating copolymerization. This typically takes place in an emulsion polymerization process. [Pg.336]

Most plastics e.g. polyolefins and polystyrenes and their derivatives such as ABS (acrylonitrile-butadiene-styrene) and SAN (styrene-acrylonitrile) are supplied by the manufacturers in ready-to-use form with most of the above-mentioned stabilizers or simply need to be additionally stabilized with other additives, e.g. antistatic agents and HALS stabilizers, as required. On the other hand, in the case of other materials (e.g. PVC) it is the end user who adds the additives, pigments or preparations. This is normally done on fluid or high-speed mixers, although in the past gravity mixers or tumble mixers were also used. The mixture is then homogenized on mixing rolls, kneaders, planetary extruders or twin-screw kneaders and further processed. [Pg.161]

The engineering analysis and design of these operations addresses questions which are different than those addressed in connection with the shaping operations. This is illustrated in Fig. 1 which is a flow sheet, cited by Nichols and Kheradi (1982), for the continuous conversion of latex in the manufacture of acrylonitrile-butadiene-styrene (ABS). In this process three of the nonshaping operations are shown (1) a chemical reaction (coagulation) (2) a liquid-liquid extraction operation which involves a molten polymer and water and (3) a vapor-liquid stripping operation which involves the removal of a volatile component from the molten polymer. The analysis and design around the devolatilization section, for example, would deal with such questions as how the exit concentration of... [Pg.62]

Fig. 1. Process flow sheet for the continuous conversion of latex in a counterrotating, tangential twin-screw extruder as it might be arranged for the production of acrylonitrile-butadiene-styrene polymer (Nichols and Kheradi, 1982). Polystyrene (or styrene-acrylonitrile) melt is fed upstream of the reactor zone where the coagulation reaction takes place. Washing (countercurrent liquid-liquid extraction) and solids separation are conducted in zones immediately downstream of the reactor zone. The remainii zones are reserved for devolatilization and pumping. Fig. 1. Process flow sheet for the continuous conversion of latex in a counterrotating, tangential twin-screw extruder as it might be arranged for the production of acrylonitrile-butadiene-styrene polymer (Nichols and Kheradi, 1982). Polystyrene (or styrene-acrylonitrile) melt is fed upstream of the reactor zone where the coagulation reaction takes place. Washing (countercurrent liquid-liquid extraction) and solids separation are conducted in zones immediately downstream of the reactor zone. The remainii zones are reserved for devolatilization and pumping.
When polymerization proceeds in the presence of modifiers, the mechanochemical process enhances cross-linking and, correspondingly, improves the physicochemical properties of final plastics. For example, mechanochemical treatment of acrylonitrile butadiene styrene (ABS) plastic in the presence of tolnene diisocyanate improves thermal oxidative stability of the plastic (Chetverikov et al. 2002). [Pg.284]

Polycarbonate is blended with a number of polymers including PET, PBT, acrylonitrile-butadiene-styrene terpolymer (ABS) rubber, and styrene-maleic anhydride (SMA) copolymer. The blends have lower costs compared to polycarbonate and, in addition, show some property improvement. PET and PBT impart better chemical resistance and processability, ABS imparts improved processability, and SMA imparts better retention of properties on aging at high temperature. Poly(phenylene oxide) blended with high-impact polystyrene (HIPS) (polybutadiene-gra/f-polystyrene) has improved toughness and processability. The impact strength of polyamides is improved by blending with an ethylene copolymer or ABS rubber. [Pg.143]

Chemical processes are far more varied and may involve either the formation of radicals or ions along a polymeric backbone. Both cationic processes3 as well as radical processes have been widely used for graft copolymerization of vinyl monomers onto various polymers. Radical graft copolymerization has been reported for many polymers including styrene-butadiene block copolymers, and acrylonitrile-butadiene-styrene terpolymer, ABS.3 7 9... [Pg.109]

RESINS (Acrylonitrile-Butadiene-Styrene). Commonly referred to as ABS resins, these materials are thermoplastic resins which are produced by grafting styrene and acrylonitrile onto a diene-rubber backbone. The usually preferred substrate is polybutadiene because of its low glass-transition temperature (approximately —80°C). Where ABS resin is prepared by suspension or mass polymerization methods, stereospedfic diene rubber made by solution polymerization is the preferred diene. Otherwise, the diene used is a high-gel or cross-linked latex made by a hot emulsion process. [Pg.1436]

Acrylonitrile-Butadiene-Styrene (ABS) Copolymers. This basic three-monomer system can be tailored to yield resins with a variety of properties. Acrylonitrile contributes heat resistance, high strength, and chemical resistance. Butadiene contributes impact strength, toughness, and retention of low-temperature properties. Styrene contributes gloss, processibility, and rigidity. ABS polymers are composed of discrete polybutadiene particles grafted with the styrene-acrylonitrile copolymer these are dispersed in the continuous matrix of the copolymer. [Pg.912]

Various patents on the homopolymerization of BD in the presence of styrene are available [581-590]. According to these patents, St is used as a solvent in which BD is selectively polymerized by the application of NdV/DIBAH/EASC. At the end of the polymerization a solution of BR in St is obtained. In subsequent reaction steps the unreacted styrene monomer is either polymerized radically, or acrylonitrile is added prior to radical initiation. During the subsequent radical polymerization styrene or styrene/acrylonitrile, respectively, are polymerized and ris-l,4-BR is grafted and partially crosslinked. In this way BR modified (or impact modified) thermoplast blends are obtained. In these blends BR particles are dispersed either in poly(styrene) (yielding HIPS = high impact poly(styrene) or in styrene-acrylonitrile-copolymers (yielding ABS = acrylonitrile/butadiene/ styrene-terpolymers). In comparison with the classical bulk processes for HIPS and ABS, this new technology allows for considerable cost reductions... [Pg.98]

The technology for deposition from aqueous systems of metal on plastics was developed originally for acrylonitrile-butadiene-styrene (ABS), and it remains still the plastic used most widely in the field—particularly for the more traditional uses where the coating is essentially decorative. However, in the past decade requirements have changed and in response to this the range of plastics available for these processes has been extended. Some comments about the materials that are most important at present are given below. [Pg.181]

During weathering, phenolic antioxidants are photooxidized into hydroperoxycy-clohexadienones, such as 59 (Pospisil, 1993 Pospisil, 1980). The presence of peroxidic moieties in 57 and 59 renders them thermolabile at temperatures exceeding 100 °C and photolysable under solar UV radiation. Both processes account for homolysis of the peroxidic moieties. As a result, the oxidative degradation of the polymeric matrix is accelerated by formed free-radical fragments (tests were performed with atactic polypropylene and acrylonitrile-butadiene-styrene terpolymer (ABS) (PospiSil, 1981 PospiSil, 1980). Low-molecular-weight products of homolysis, such as 60 to 63 are formed in low amounts. [Pg.69]


See other pages where Acrylonitrile-butadiene-styrene processing is mentioned: [Pg.1023]    [Pg.378]    [Pg.327]    [Pg.261]    [Pg.541]    [Pg.323]    [Pg.201]    [Pg.334]    [Pg.1292]    [Pg.1336]    [Pg.75]    [Pg.216]    [Pg.948]    [Pg.267]    [Pg.378]    [Pg.327]    [Pg.421]    [Pg.261]    [Pg.21]    [Pg.167]    [Pg.211]    [Pg.553]    [Pg.206]    [Pg.375]    [Pg.278]    [Pg.486]    [Pg.68]    [Pg.250]    [Pg.421]   
See also in sourсe #XX -- [ Pg.460 ]




SEARCH



Acrylonitril-butadiene-styrene

Acrylonitrile-butadiene-styrene

Butadiene-acrylonitrile

STYRENE-ACRYLONITRILE

Styrene process

Styrene-butadiene

© 2024 chempedia.info