Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile-butadiene-styrene mechanical

Acrylonitrile—Butadiene—Styrene. ABS is an important commercial polymer, with numerous apphcations. In the late 1950s, ABS was produced by emulsion grafting of styrene-acrylonitrile copolymers onto polybutadiene latex particles. This method continues to be the basis for a considerable volume of ABS manufacture. More recently, ABS has also been produced by continuous mass and mass-suspension processes (237). The various products may be mechanically blended for optimizing properties and cost. Brittle SAN, toughened by SAN-grafted ethylene—propylene and acrylate mbbets, is used in outdoor apphcations. Flame retardancy of ABS is improved by chlorinated PE and other flame-retarding additives (237). [Pg.419]

Two commercially significant graft copolymers are acrylonitrile—butadiene—styrene (ABS) resins and impact polystyrene (IPS) plastics. Both of these families of materials were once simple mechanical polymer blends, but today such compositions are generally graft copolymers or blends of graft copolymers and homopolymers. [Pg.186]

Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004). Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45 739-748. [Pg.218]

Z.F. Zhou, H. Huang, and N.C. Liu, Kinetics and mechanism of grafting of undecylenic acid onto acrylonitrile-butadiene-styrene terpolymer,. Polym. Sci., Part A Polym. Chetti., 39(4) 486-494, February 2001. [Pg.259]

A. Arostegui, M. Sarrionandia, J. Aurrekoetxea, and I. Urrutibeas-coa, Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile-butadiene-styrene copolymer, Polym. Degrad. Stab., 91(ll) 2768-2774, November 2006. [Pg.266]

Polymerization Reactions. The polymerization of butadiene with itself and with other monomers represents its largest commercial use. The commercially most important polymers are styrene—butadiene rubber (SBR), polybutadiene (BR), styrene—butadiene latex (SBL), acrylonitrile—butadiene—styrene polymer (ABS), and nitrile rubber (NR). The reaction mechanisms are free-radical, anionic, cationic, or coordinate, depending on the nature of the initiators or catalysts (194—196). [Pg.345]

This study was therefore undertaken to prepare and evaluate acrylonitrile—butadiene-styrene (ABS) and methyl methacrylate-butadiene-styrene (MBS) polymers under similar conditions to determine whether replacement of acrylonitrile by methyl methacrylate could improve color stability during ultraviolet light aging, without detracting seriously from the good mechanical and thermal-mechanical properties of conventional ABS plastics. For purposes of control, the study also included briefer evaluation of commercial ABS, MBS, and acrylonitrile-butyl acrylate-styrene plastics. [Pg.242]

K.H. Pawlowski and B. Schartel, Flame retardancy mechanisms of aryl phosphates incombination with boehmite in bisphenol A polycarbonate/acrylonitrile butadiene styrene blends, Polym. Degrad. Stabil., 2008, 93 657-667. [Pg.328]

Pawlowski KH, Schartel B. Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol a bisfdiphenyl phosphate) in polycarbonate/acrylonitrile-butadiene-styrene blends. Polym. Int. 2007 56 1404-1414. [Pg.417]

We have just discussed several methods for improving the mechanical properties of polymers. In addition to these techniques, one could think about synthesizing copolymers of styrene and less brittle monomer(s). Actually, we have already seen that this approach has been used with considerable success (see Chapter 5 and Table 5-2). Styrene-acrylonitrile (SAN) copolymers and acrylonitrile-butadiene-styrene (ABS) terpolymers have excellent impact strength. Although sometimes copolymerization is a viable option, oftentimes a completely different approach is called for. Let s see how. [Pg.153]

MABS polymers (methyl methacrylate-acrylonitrile-butadiene-styrene) together with blends composed of polyphenylene ether and impact-resistant polystyrene (PPE/PS-I) also form part of the styrenic copolymer product range. Figure 2.1 provides an overview of the different classes of products and trade names. A characteristic property is their amorphous nature, i.e. high dimensional stability and largely constant mechanical properties to just below the glass transition temperature, Tg. [Pg.26]

After the examination of the PS photooxidation mechanism, a comparison of the photochemical behavior of PS with that of some of its copolymers and blends is reported in this chapter. The copolymers studied include styrene-stat-acrylo-nitrile (SAN) and acrylonitrile-butadiene-styrene (ABS). The blends studied are AES (acrylonitrile-EPDM-styrene) (EPDM = ethylene-propylene-diene-monomer) and a blend of poly(vinyl methyl ether) (PVME) and PS (PVME-PS). The components of the copolymers are chemically bonded. In the case of the blends, PS and one or more polymers are mixed. The copolymers or the blends can be homogeneous (miscible components) or phase separated. The potential interactions occurring during the photodegradation of the various components may be different if they are chemically bonded or not, homogeneously dispersed or spatially separated. Another important aspect is the nature, the proportions and the behavior towards the photooxidation of the components added to PS. How will a component which is less or more photodegradable than PS influence the degradation of the copolymer or the blend We show in this chapter how the... [Pg.703]

Craze formation is a dominant mechanism in the toughening of glassy polymers by elastomers in polyblends. Examples are high-impact polystyrene (HIPS), impact poly(vinyl chloride), and ABS (acrylonitrile-butadiene-styrene) polymers. Polystyrene and styrene-acrylonitrile (SAN) copolymers fracture at strains of 10 , whereas rubber-modified grades of these polymers (e.g., HIPS and ABS) form many crazes before breaking at strains around 0.5. Rubbery particles in... [Pg.425]

Morgan, A.B. Tour, J.M. Synthesis, flame-retardancy testing, and preliminary mechanism studies of nonhalogenated aromatic boronic acids a new class of condensed-phase polymer flame-retardant additives for acrylonitrile-butadiene-styrene and polycarbonate. J. Appl. Polym. Sci. 2000, 76, 1257-1268. [Pg.1893]

The microphase structure and mechanical properties of the blends containing neat acrylonitrile-butadiene-styrene copolymer (ABS), styrene-acrylonitrile copolymer (SAN) and sodium sulfonated SAN ionomer have been investigated as a function of ion content of the ionomer in the blend by Park et a/.51 The interfacial adhesion was quantified by H NMR solid echo experiments. The amount of interphase for the blend containing the SAN ionomer with low ion content (3.1 mol%) was nearly the same as that of ABS, but it decreases with the ion content of the ionomer for the blend with an ion content greater than 3.1 mol%. Changing the ionomer content in the blends shows a positive deviation from the rule of mixtures in tensile properties of the blends containing the SAN ionomer with low ion content. This seems to result from the enhanced tensile properties of the SAN ionomer, interfacial adhesion between the rubber and matrix, and the stress concentration effect of the secondary particles. [Pg.21]

In heterophase polymeric materials such as rubber modified polystyrene or acrylonitrile-butadiene-styrene (ABS) resins, outstanding mechanical properties can be obtained only by regulating the dispersed rubber particle size and by achieving adhesion between the rubber and the resin phase. This can usually be achieved by adding block or graft copolymers, or by their formation in situ, as in industry. [Pg.259]

Styrenic plastics such as acrylonitrile/butadiene/styrene graft copolymers (ABS) and impact-resistant polystyrenes are very sensitive towards oxidation, mainly because of their butadiene content. Degradation on weathering starts at the surface and results in rapid loss of mechanical properties... [Pg.123]


See other pages where Acrylonitrile-butadiene-styrene mechanical is mentioned: [Pg.261]    [Pg.327]    [Pg.822]    [Pg.363]    [Pg.132]    [Pg.475]    [Pg.261]    [Pg.778]    [Pg.21]    [Pg.88]    [Pg.167]    [Pg.175]    [Pg.211]    [Pg.243]    [Pg.706]    [Pg.207]    [Pg.63]    [Pg.68]    [Pg.250]    [Pg.1021]    [Pg.182]    [Pg.375]    [Pg.258]    [Pg.259]    [Pg.513]    [Pg.531]    [Pg.32]    [Pg.106]    [Pg.7166]    [Pg.344]   


SEARCH



Acrylonitril-butadiene-styrene

Acrylonitrile mechanism

Acrylonitrile-butadiene-styrene

Acrylonitrile-butadiene-styrene degradation mechanisms

Butadiene-acrylonitrile

STYRENE-ACRYLONITRILE

Styrene mechanism

Styrene-butadiene

© 2024 chempedia.info