Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tensile Properties Enhancement

Subsection C This subsection contains requirements pertaining to classes of materials. Carbon and low-alloy steels are governed by Part UCS, nonferrous materials by Part UNF, high-alloy steels by Part UHA, and steels with tensile properties enhanced by heat treatment by Part UHT. Each of these parts includes tables of maximum allowable stress values for all code materials for a range of metal temperatures. These stress values include appropriate safety fac tors. Rules governing the apphcation, fabrication, and heat treatment of the vessels are included in each part. [Pg.1025]

In conventional tenter orientation, the sequence of steps is as described above (MD—TD). In some cases it is advantageous to reverse the draw order (TD—MD) or to use multiple draw steps, eg, MD—TD—MD. These other techniques are used to produce "tensilized" films, where the MD tensile properties are enhanced by further stretching. The films are generally unbalanced in properties and in extreme cases may be fibrillated to give fiber-like elements for special textile appHcations. Tensilized poly(ethylene terephthalate) is a common substrate for audio and video magnetic tape and thermal transfer tape. [Pg.381]

Bisphenol A diglycidyl ether [1675-54-3] reacts readily with methacrylic acid [71-49-4] in the presence of benzyl dimethyl amine catalyst to produce bisphenol epoxy dimethacrylate resins known commercially as vinyl esters. The resins display beneficial tensile properties that provide enhanced stmctural performance, especially in filament-wound glass-reinforced composites. The resins can be modified extensively to alter properties by extending the diepoxide with bisphenol A, phenol novolak, or carboxyl-terrninated mbbers. [Pg.313]

In a partially crystalline homopolymer, nylon 6, property enhancement has been achieved by blending with a poly(ethylene-co-acrylic acid) or its salt form ionomer [24]. Both additives proved to be effective impact modifiers for nylon 6. For the blends of the acid copolymer with nylon 6, maximum impact performance was obtained by addition of about 10 wt% of the modifier and the impact strength was further enhanced by increasing the acrylic acid content from 3.5 to 6%. However, blends prepared using the salt form ionomer (Sur-lyn 9950-Zn salt) instead of the acid, led to the highest impact strength, with the least reduction in tensile... [Pg.151]

Anorin-38 has also shown an interesting effect as a multifunctional additive (a single additive to replace many of the conventional additives) for natural rubber (NR). It showed excellent blending behavior and compatibility with NR. Aorin-38 enhances the tensile properties and percent elongation, decreases fatigue, acts as an antioxidant and antiozonant, and positively affects many of the other properties, apart from acting as a process aid and a cure enhancer [183-186]. [Pg.428]

Eoams were extruded from low density polyethylene (LDPE) and blends of LDPE with syndiotactic polypropylene (sPP), using isobutane as the blowing agent. The extruded materials were characterised by measurement of dimensional stability at room temperature, density, tensile properties, dynamic stiffness, and crystallinity determined by differential scanning calorimetry. The sPP, with a slow crystallisation rate, did not interfere with the expansion of the LDPE, and enhanced the temperature resistance by in-situ crystallisation. The blends were flexible, dimensionally... [Pg.44]

The increment in mechanical properties (tensile strength, 300% modulus, and Young s modulus) as a function of SAF is plotted in Fig. 39. In general, the higher level of SAF, which in turn indicates better exfoliation, results in high level of property enhancement. However, the level of increment with the increase in SAF is different in all three cases and follows a typical exponential growth pattern. The apparent nonlinear curve fitting of the experimental values presented in Fig. 39 is a measure of the dependence of mechanical properties on the proposed SAF function. [Pg.63]

This moldable material primarily consists of TS polyester resin, glass fiber reinforcement, and filler. Additional ingredients, such as low-profile additives, cure initiators, thickeners, and mold-release agents are used to enhance the performance or processing of the material. As with any material, such as metallics and plastics, SMC can be formulated in-house or by compounders to meet performance requirements of a particular application such as tensile properties or Class A surface finish. Varying the type and percentage of the composition will result in variations in mechanical properties and processability. [Pg.472]

The prevention of further deterioration requires arresting the chain scission reaction caused by acid or enzymatic hydrolysis of the glycosidic linkages. The reduction in DP through chain scission has a dual character to its negative effect upon properties. In addition to the inherent reduction in the tensile properties of the fibers, the lower DP enhances the opportunity for crystallization with resulting embrittlement. [Pg.174]

X-ray diffraction measurements were used to determine the orientation of talc and lead carboxylate fillers in plasticised PVC extrudates. Correlations between the extrusion conditions (draw ratio and temperature), the development of filler particle orientation and the tensile properties of the plasticised PVC were studied. The presence of fillers enhanced Young s modulus and this was predicted well by the model developed by Halpin and Tsai. The extrudates were stretched above and below the gel-liquid transition temperature of PVC (about 205C). Above this temperature, the PVC could be stretched more and the tensile results indicated that the crystallites which were surrounded by more flexible chains were more oriented. 24 refs. [Pg.129]

Thus, Hope and his coworkers concluded for the solid-state extrusion of linear poly-ethylenes that increasing the molecular wei t reduced both the maximum degree of deformation and the tensile properties of the jaoduct. Hie sother hand, increased the maximum degree of deformation. The degree of stiffness enhancement upon extrusion and the melting points of the products were reduced. [Pg.128]

An accelerator is a substance that speeds up the vulcanization of rubber or allows it to happen at a lower temperature. Accelerators may also enhance tensile properties and improve age resistance of the final product. [Pg.27]

In one example, the tensile strength of polyamide 6 was increased by 55% and the moduli by 90%, with the addition of only 4wt% of delaminated clay. The enhanced tensile property of PCN suggests that nanocomposite performance is related to the degree of clay delamination, which increases the interaction between the clay layers and the polymers. Several explanations, based on the interfacial properties and the mobility of the polymer chains, have been given for this reinforcement. Kojima et al. reported that the tensile modulus improvement for polyamide 6-clay hybrid originated from a constrained region, where the polymer chains have reduced mobility. The dispersion and delamination of the clay were the key factors for the reinforcement. The delaminated nanocomposite structure produces a substantial increase in modulus. [Pg.2308]


See other pages where Tensile Properties Enhancement is mentioned: [Pg.848]    [Pg.284]    [Pg.365]    [Pg.848]    [Pg.284]    [Pg.365]    [Pg.320]    [Pg.485]    [Pg.157]    [Pg.186]    [Pg.877]    [Pg.178]    [Pg.251]    [Pg.541]    [Pg.28]    [Pg.287]    [Pg.320]    [Pg.157]    [Pg.156]    [Pg.74]    [Pg.26]    [Pg.391]    [Pg.396]    [Pg.408]    [Pg.416]    [Pg.418]    [Pg.479]    [Pg.431]    [Pg.126]    [Pg.73]    [Pg.64]    [Pg.132]    [Pg.6]    [Pg.10]   


SEARCH



Property enhancement

Tensile properties

© 2024 chempedia.info