Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile mechanism

The mechanism of cyanoethylatlon is similar to that given in Section VI,21 for the Michael reaction. Acrylonitrile is the simplest ap-uiisaturated organic nitrile. [Pg.915]

Nitrile mbber finds broad application in industry because of its excellent resistance to oil and chemicals, its good flexibility at low temperatures, high abrasion and heat resistance (up to 120°C), and good mechanical properties. Nitrile mbber consists of butadiene—acrylonitrile copolymers with an acrylonitrile content ranging from 15 to 45% (see Elastomers, SYNTHETIC, NITRILE RUBBER). In addition to the traditional applications of nitrile mbber for hoses, gaskets, seals, and oil well equipment, new applications have emerged with the development of nitrile mbber blends with poly(vinyl chloride) (PVC). These blends combine the chemical resistance and low temperature flexibility characteristics of nitrile mbber with the stability and ozone resistance of PVC. This has greatly expanded the use of nitrile mbber in outdoor applications for hoses, belts, and cable jackets, where ozone resistance is necessary. [Pg.186]

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

In addition to graft copolymer attached to the mbber particle surface, the formation of styrene—acrylonitrile copolymer occluded within the mbber particle may occur. The mechanism and extent of occluded polymer formation depends on the manufacturing process. The factors affecting occlusion formation in bulk (77) and emulsion processes (78) have been described. The use of block copolymers of styrene and butadiene in bulk systems can control particle size and give rise to unusual particle morphologies (eg, coil, rod, capsule, cellular) (77). [Pg.204]

Acrylonitrile—Butadiene—Styrene. ABS is an important commercial polymer, with numerous apphcations. In the late 1950s, ABS was produced by emulsion grafting of styrene-acrylonitrile copolymers onto polybutadiene latex particles. This method continues to be the basis for a considerable volume of ABS manufacture. More recently, ABS has also been produced by continuous mass and mass-suspension processes (237). The various products may be mechanically blended for optimizing properties and cost. Brittle SAN, toughened by SAN-grafted ethylene—propylene and acrylate mbbets, is used in outdoor apphcations. Flame retardancy of ABS is improved by chlorinated PE and other flame-retarding additives (237). [Pg.419]

Studies of the particle—epoxy interface and particle composition have been helphil in understanding the mbber-particle formation in epoxy resins (306). Based on extensive dynamic mechanical studies of epoxy resin cure, a mechanism was proposed for the development of a heterophase morphology in mbber-modifted epoxy resins (307). Other functionalized mbbers, such as amine-terminated butadiene—acrylonitrile copolymers (308) and -butyl acrylate—acryhc acid copolymers (309), have been used for toughening epoxy resins. [Pg.422]

BP. These nitrile alloy membranes are compounded from PVC, flexibilized by the addition of butadiene—acrylonitrile copolymers, PVC, and other proprietary ingredients. Typically reinforced with polyester scrim, NBP membranes are 1 mm thick and have a width of 1.5 m. They ate ptedominandy used in mechanically fastened roofing systems. NBP membranes exhibit excellent teat and puncture resistance as well as good weatherabihty, and remain flexible at low temperatures. They ate resistant to most chemicals but ate sensitive to aromatic hydrocarbons. The sheet is usually offered in light colors. The physical characteristics of NBP membranes have been described (15). [Pg.214]

Styrene readily copolymerizes with many other monomers spontaneously. The styrene double bond is electronegative on account of the donating effect of the phenyl ring. Monomers that have electron-withdrawiag substituents, eg, acrylonitrile and maleic anhydride, tend to copolymerize most readily with styrene because their electropositive double bonds are attached to the electronegative styrene double bond. Spontaneous copolymerization experiments of many different monomer pair combiaations iadicate that the mechanism of initiation changes with the relative electronegativity difference between the monomer pairs (185). [Pg.519]

Heterogeneous polymerization is characteristic of a number of monomers, including vinyl chloride and acrylonitrile. A completely satisfactory mechanism for these reactions has not been deterrnined. This is tme for VDC also. Earlier studies have not been broad enough to elucidate the mechanism (26,30,31). Morphologies of as-polymerized poly(vinyl chloride) (PVC) and polyacrylonitrile (PAN) are similar, suggesting a similar mechanism. [Pg.429]

The dynamic mechanical properties of VDC—VC copolymers have been studied in detail. The incorporation of VC units in the polymer results in a drop in dynamic modulus because of the reduction in crystallinity. However, the glass-transition temperature is raised therefore, the softening effect observed at room temperature is accompanied by increased brittleness at lower temperatures. These copolymers are normally plasticized in order to avoid this. Small amounts of plasticizer (2—10 wt %) depress T significantly without loss of strength at room temperature. At higher levels of VC, the T of the copolymer is above room temperature and the modulus rises again. A minimum in modulus or maximum in softness is usually observed in copolymers in which T is above room temperature. A thermomechanical analysis of VDC—AN (acrylonitrile) and VDC—MMA (methyl methacrylate) copolymer systems shows a minimum in softening point at 79.4 and 68.1 mol % VDC, respectively (86). [Pg.434]

Copolymers of acrylonitrile [107-13-1] are used in extmsion and molding appHcations. Commercially important comonomers for barrier appHcations include styrene and methyl acrylate. As the comonomer content is increased, the permeabiUties increase as shown in Figure 3. These copolymers are not moisture-sensitive. Table 7 contains descriptions of three high nitrile barrier polymers. Barex and Cycopac resins are mbber-modified to improve the mechanical properties. [Pg.490]

Two commercially significant graft copolymers are acrylonitrile—butadiene—styrene (ABS) resins and impact polystyrene (IPS) plastics. Both of these families of materials were once simple mechanical polymer blends, but today such compositions are generally graft copolymers or blends of graft copolymers and homopolymers. [Pg.186]

Pure polymeric acrylonitrile is not an interesting fiber and it is virtually undyeable. In order to make fibers of commercial iaterest acrylonitrile is copolymerized with other monomers such as methacrylic acid, methyl methacrylate, vinyl compounds, etc, to improve mechanical, stmctural, and dyeing properties. Eibers based on at least 85% of acrylonitrile monomer are termed acryHc fibers those containing between 35—85% acrylonitrile monomer, modacryhc fibers. The two types are in general dyed the same, although the type and number of dye sites generated by the fiber manufacturing process have an influence (see Eibers, acrylic). [Pg.362]

A number of studies have recently been devoted to membrane applications [8, 100-102], Yoshikawa and co-workers developed an imprinting technique by casting membranes from a mixture of a Merrifield resin containing a grafted tetrapeptide and of linear co-polymers of acrylonitrile and styrene in the presence of amino acid derivatives as templates [103], The membranes were cast from a tetrahydrofuran (THF) solution and the template, usually N-protected d- or 1-tryptophan, removed by washing in more polar nonsolvents for the polymer (Fig. 6-17). Membrane applications using free amino acids revealed that only the imprinted membranes showed detectable permeation. Enantioselective electrodialysis with a maximum selectivity factor of ca. 7 could be reached, although this factor depended inversely on the flux rate [7]. Also, the transport mechanism in imprinted membranes is still poorly understood. [Pg.180]

A substantial number of photo-induced charge transfer polymerizations have been known to proceed through N-vinylcarbazole (VCZ) as an electron-donor monomer, but much less attention was paid to the polymerization of acrylic monomer as an electron receptor in the presence of amine as donor. The photo-induced charge-transfer polymerization of electron-attracting monomers, such as methyl acrylate(MA) and acrylonitrile (AN), have been recently studied [4]. In this paper, some results of our research on the reaction mechanism of vinyl polymerization with amine in redox and photo-induced charge transfer initiation systems are reviewed. [Pg.227]

When the physical modification method is used, PS is modified by mechanical stirring with various synthetic rubbers such as polybutadiene, polybutadiene styrene, polyisopropene, polychloropropene, polybutadiene styrene-acrylonitrile copolymers. In the chemical modification, PS is modified with polyfunctional modificators in the presence of cationic catalysis. [Pg.259]

Polymers in Schemes 12 and 13 were the first examples of the preparation of pyridinium and iminopyridinium ylide polymers. One of the more recent contributions of Kondo and his colleagues [16] deals with the sensitization effect of l-ethoxycarbonyliminopyridinium ylide (IPYY) (Scheme 14) on the photopolymerization of vinyl monomers. Only acrylic monomers such as MMA and methyl acrylate (MA) were photoinitiated by IPYY, while vinylacetate (VA), acrylonitrile (AN), and styrene were unaffected by the initiator used. A free radical mechanism was confirmed by a kinetic study. The complex of IPYY and MMA was defined as an exciplex that served as a precursor of the initiating radical. This ylide is unique in being stabilized by the participation of a... [Pg.375]

Improvement in the solvent and oil resistance of rubbers can be achieved via grafting of acrylonitrile onto rubber [140-142] and rubber blends [143]. The careful control of the degree of grafting allows vulcanized rubber with high-mechanical properties compared with ungrafted vulcanized rubber to be obtained. Also, acid resistance [144] and resistance to microbiological attack [145,146] was improved for cellulose grafted with acrylonitrile, and increases in base resistance were also noted for MMA and a mixture of MMA and ethyl acrylate [13],... [Pg.512]

MMA and DMAPMA poly(MMA-co-DMAPMA) 23, obtained by radical copolymerization, can produce a photografting reaction with acrylonitrile (AN) using BP as the initiator [61]. The formation of a graft copolymer, poly[(MMA -c<7-DMAPMA)- -AN] was confirmed by FT-IR spectrophotometry. Based on ESR studies and end group analysis, the mechanism of grafting reaction is proposed as follows ... [Pg.552]

Although, the heat resistance of NBR is directly related to the increase in acrylonitrile content (ACN) of the elastomer, the presence of double bond in the polymer backbone makes it susceptible to heat, ozone, and light. Therefore, several strategies have been adopted to modify the nitrile rubber by physical and chemical methods in order to improve its properties and degradation behavior. The physical modification involves the mechanical blending of NBR with other polymers or chemical ingredients to achieve the desired set of properties. The chemical modifications, on the other hand, include chemical reactions, which impart structural changes in the polymer chain. [Pg.555]

Coran and Patel [33] selected a series of TPEs based on different rubbers and thermoplastics. Three types of rubbers EPDM, ethylene vinyl acetate (EVA), and nitrile (NBR) were selected and the plastics include PP, PS, styrene acrylonitrile (SAN), and PA. It was shown that the ultimate mechanical properties such as stress at break, elongation, and the elastic recovery of these dynamically cured blends increased with the similarity of the rubber and plastic in respect to the critical surface tension for wetting and with the crystallinity of the plastic phase. Critical chain length of the rubber molecule, crystallinity of the hard phase (plastic), and the surface energy are a few of the parameters used in the analysis. Better results are obtained with a crystalline plastic material when the entanglement molecular length of the... [Pg.641]


See other pages where Acrylonitrile mechanism is mentioned: [Pg.215]    [Pg.215]    [Pg.916]    [Pg.263]    [Pg.182]    [Pg.186]    [Pg.192]    [Pg.197]    [Pg.202]    [Pg.233]    [Pg.278]    [Pg.515]    [Pg.148]    [Pg.519]    [Pg.86]    [Pg.7]    [Pg.23]    [Pg.104]    [Pg.315]    [Pg.520]    [Pg.261]    [Pg.128]    [Pg.327]    [Pg.34]    [Pg.69]    [Pg.495]    [Pg.560]    [Pg.570]   
See also in sourсe #XX -- [ Pg.6 , Pg.263 ]

See also in sourсe #XX -- [ Pg.263 ]

See also in sourсe #XX -- [ Pg.263 ]




SEARCH



Acrolein/acrylonitrile reaction mechanism

Acrylate-styrene-acrylonitrile, mechanical

Acrylate-styrene-acrylonitrile, mechanical properties

Acrylonitrile termination mechanism

Acrylonitrile-butadiene-styrene degradation mechanisms

Acrylonitrile-butadiene-styrene mechanical

Mechanical properties acrylonitrile-butadiene rubber

Mechanical properties hydrogenated acrylonitrile-butadiene

Styrene-acrylonitrile mechanical properties

© 2024 chempedia.info