Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acoustic tools

Electromagnetic acoustic tools are particularly adapted to the detection of cracks in dry gas pipelines. This tool generates ultrasonic signals without requiring liquid couplant to transfer the ultrasound into the steel. These tools are new to the pipeline inspection industry, so their effectiveness has not yet been determined. [Pg.522]

The present work was done with the aim to evaluate the efficiency of the acoustic emission method as a diagnostic tool for analysing a carbon plastic composite and its adhesive joints. The samples of the carbon plastic type UKN-5000 were used in the test. Non-defected samples and samples with artificial defects were tested. [Pg.83]

The Champ-Sons model is a most effieient tool allowing quantitative predictions of the field radiated by arbitrary transducers and possibly complex interfaces. It allows one to easily define the complete set of transducer characteristics (shape of the piezoelectric element, planar or focused lens, contact or immersion, single or multi-element), the excitation pulse (possibly an experimentally measured signal), to define the characteristics of the testing configuration (geometry of the piece, transducer position relatively to the piece, characteristics of both the coupling medium and the piece), and finally to define the calculation to run (field-points position, acoustical quantity considered). [Pg.737]

Insofar as Ultrasonic Array probes have come onto the market from several years and are now moving from prototype stages into industrial tools for on-site inspections, methods and tools for acoustic characterization is becoming a real concern. Furthermore, the lack of standards, either national or European, enhances the needs for guidelines proposal. [Pg.819]

Bulk and surface imprinting strategies are straightforward tools to generate artificial antibodies. Combined with transducers such as QCM (quartz crystal microbalance), SAW (surface acoustic wave resonator), IDC (interdigital capacitor) or SPR (surface plasmon resonator) they yield powerful chemical sensors for a very broad range of analytes. [Pg.298]

Tantalum and niobium are added, in the form of carbides, to cemented carbide compositions used in the production of cutting tools. Pure oxides are widely used in the optical industiy as additives and deposits, and in organic synthesis processes as catalysts and promoters [12, 13]. Binary and more complex oxide compounds based on tantalum and niobium form a huge family of ferroelectric materials that have high Curie temperatures, high dielectric permittivity, and piezoelectric, pyroelectric and non-linear optical properties [14-17]. Compounds of this class are used in the production of energy transformers, quantum electronics, piezoelectrics, acoustics, and so on. Two of... [Pg.1]

The scanning acoustic microscope is a powerful new tool for the study of the physical properties of materials and has been successfully used for imaging interior structures and for nondestructive evaluation in materials science and biology. [Pg.30]

The acoustic microscopy s primary application to date has been for failure analysis in the multibillion-dollar microelectronics industry. The technique is especially sensitive to variations in the elastic properties of semiconductor materials, such as air gaps. SAM enables nondestructive internal inspection of plastic integrated-circuit (IC) packages, and, more recently, it has provided a tool for characterizing packaging processes such as die attachment and encapsulation. Even as ICs continue to shrink, their die size becomes larger because of added functionality in fact, devices measuring as much as 1 cm across are now common. And as die sizes increase, cracks and delaminations become more likely at the various interfaces. [Pg.30]

There are, however, additional issues when one wants to perform the LES of an industrial device, and these are to be solved if the LES methodology is ever to be a useful tool. First, the geometric intricacy of most industrial combustion chambers cannot be represented with a Cartesian mesh high-order methods on unstructured grids must be developed. Moreover, many issues about the boundary conditions are raised, such as boundary movement for blades or pistons, turbulence injection, and acoustic properties. Such challenges are not to be underestimated, as their impact on the structure of the flow might sometimes be greater than that of the turbulence model. [Pg.166]

Wood et al. have combined acoustic levitation and Raman spectroscopy with the intention of developing a field tool for environmental monitoring of algal blooms and nutrient availability [62]. Heraud discussed the most appropriate spectral preprocessing techniques for analysis of Raman spectra of single microalgal cells and developed a method to predict the nutrient status of those cells from in vivo spectra [63,64]. [Pg.214]

The acoustic chemometric approach can also be used to monitor industrial production processes involving particles and powders and to provide a complementary tool for process operators for more efficient process control, or to monitor particle movement in a fluidized bed [7] for example. Below we illustrate the application potential by focusing on two applications process monitoring of a granulation process and monitoring of ammonia concentration. [Pg.285]

The contents of the book are intended to help a newcomer in the field, as well as to provide current information including developing technologies, for those who have practiced process analytical chemistry and PAT for some time. The main spectroscopic tools used for PAT are presented NIR, Raman, UV-Vis and FTIR, including not just the hardware, but many apphcation examples, and implementation issues. As chemometrics is central for use of many of these tools, a comprehensive chapter on this, now revised to more specifically address some issues relevant to PAT is included. In this second edition many of the previous chapters have been updated and revised, and additional chapters covering the important topic of sampling, and the additional techniques of NMR, fluorescence, and acoustic chemometrics are included. [Pg.577]

The Presumed Probability Density Function method is developed and implemented to study turbulent flame stabilization and combustion control in subsonic combustors with flame holders. The method considers turbulence-chemistry interaction, multiple thermo-chemical variables, variable pressure, near-wall effects, and provides the efficient research tool for studying flame stabilization and blow-off in practical ramjet burners. Nonreflecting multidimensional boundary conditions at open boundaries are derived, and implemented into the current research. The boundary conditions provide transparency to acoustic waves generated in bluff-body stabilized combustion zones, thus avoiding numerically induced oscillations and instabilities. It is shown that predicted flow patterns in a combustor are essentially affected by the boundary conditions. The derived nonreflecting boundary conditions provide the solutions corresponding to experimental findings. [Pg.205]

Others FFF techniques, such as Acoustical FFF and Dielectric FFF are promising separation tools but they have not yet reached the commercial stage. Interested readers should address to specific literature [3]. [Pg.356]

Appropriate microbubble/sound combinations can provide novel therapeutic tools. Blood clots can, for example, be broken up by a proper targeted bubble/ focused sound wave association [60]. Such combinations may also enable non-invasive brain surgery, [61] as well as targeted drug delivery via transient acoustically induced opening of the blood-brain barrier [62]. [Pg.471]

Raw data gathered from seismic surveys must be processed to compensate for and to remove a variety of distortions unwanted noises created by weathered near-surface rocks, normal time delays, and echoing by rebounding acoustic waves—to provide the clearest possible image of the strata below. Computers can restore these distortions in a fraction of the time that was formerly required to adjust the data painstakingly by hand. Advanced techniques not only permit presentations in three dimensions, but also in color, and to create contour maps and models of subterranean features. However, even with the use of sophisticated tools, there remains a large measure of uncertainty. History has shown repeatedly that a prospective area rejected by one petroleum firm has been accepted by another and proved to be successful. [Pg.1246]


See other pages where Acoustic tools is mentioned: [Pg.213]    [Pg.175]    [Pg.326]    [Pg.151]    [Pg.213]    [Pg.175]    [Pg.326]    [Pg.151]    [Pg.132]    [Pg.310]    [Pg.314]    [Pg.82]    [Pg.994]    [Pg.29]    [Pg.30]    [Pg.66]    [Pg.81]    [Pg.742]    [Pg.64]    [Pg.163]    [Pg.120]    [Pg.401]    [Pg.84]    [Pg.98]    [Pg.281]    [Pg.284]    [Pg.455]    [Pg.11]    [Pg.359]    [Pg.138]    [Pg.198]    [Pg.278]    [Pg.335]    [Pg.107]    [Pg.43]   
See also in sourсe #XX -- [ Pg.522 ]




SEARCH



© 2024 chempedia.info