Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids acetic from alcohol

The addition of alcohol or some other water miscible solvent for the coupler is recommended when very sluggish coupling reactions are involved. It is then possible to have the solution neutral or acid (acetic) from the start. If the coupler tends to form a diazoamino compound (e.g., m-toluidine), the coupling reaction is always carried out in as strongly acid solution as possible. [Pg.395]

Preparation of Ethyl Acetate from Alcohol and Acetic Acid.—(SECTION 160). —Mix in a dry 200 cc. distilling flask 50 grams of alcohol, 60 grams of glacial acetic acid, and 4 cc. of 1 If barium carbonate is not available, calcium carbonate may be used. [Pg.78]

Sulfuric acid/acetic acid Formamides from alcohols... [Pg.145]

Amorphous Se added to a soln. of -butylamine in tetrahydrofuran, CO introduced, after ca. 5 min. when the Se has dissolved oxygen or air introduced simultaneously with CO for 4 hrs., then the CO-flow stopped and the Og-flow continued to precipitate Se -> l,3-di- -butylurea. Y ca. 100%. F. e., also 2-imidazolidone from ethylenediamine (cf. Synth. Meth. 3, 375), s. N. Sonoda et al.. Am. Soc. 93, 6344 (1971) sym. carbonic acid esters from alcohols in the presence of Na-alkoxide s. Tetrah. Let. 7977,4885 urethans from alcohols, amines, and CO s. Chem. Lett. 1972, 373 (Eng) carbonylation of amines in the presence of Ag-acetate, sym. ureas from prim, amines and sym. oxamides from sec. amines, s. T. Tsuda, Y. Isegawa, and T. Saegusa, J. Org. Chem. 37, 2670 (1972). [Pg.96]

Suspend 0 25 g. of 2 4-dinitrophenylhydrazine in 5 ml. of methanol and add 0-4 0-5 ml. of concentrated sulphuric acid cautiously. FUter the warm solution and add a solution of 0 1-0-2 g. of the carbonyl compound in a small volume of methanol or of ether. If no sohd separate within 10 minutes, dUute the solution carefuUy with 2N sulphuric acid. CoUect the solid by suction filtration and wash it with a little methanol. RecrystaUise the derivative from alcohol, dUute alcohol, alcohol with ethyl acetate or chloroform or acetone, acetic acid, dioxan, nitromethane, nitrobenzene or xylene. [Pg.344]

Dissolve 0 5 g. of the primary amine and 0-5 g. of pure phthaUc anhydride in 5 ml. of glacial acetic acid and reflux for 20-30 minutes. (If the amine salt is used, add 1 g. of sodium acetate.) The N-substituted phthaUmide separates out on cooling. Recrystallise it from alcohol or from glacial acetic acid. [Pg.423]

Preparation of the sulphones. Dissolve the 2 4-dinitrophenyl-sulphide in the minimum volume of warm glacial acetic acid and add 3 per cent, potassium permanganate solution with shaking as fast as decolourisation occurs. Use a 50 per cent, excess of potassium permanganate if the sulphide tends to precipitate, add more acetic acid. Just decolourise the solution with sulphur dioxide (or with sodium bisulphite or alcohol) and add 2-3 volumes of crushed ice. Filter off the sulphone, dry, and recrystaUise from alcohol. [Pg.501]

Diphenyl. Reflux a mixture of 1 g, of diphenyl, 2 ml. of glacial acetic acid and 0 -5 ml. of fuming nitric acid for 10 minutes. Pour into 20 ml. of cold water, filter oflF the precipitate, wash it with cold water imtil free from acid, and recrystallise from alcohol. The product is 4-nitrodiphenyl, m.p. 114°,... [Pg.520]

The following give abnormal results when treated with chlorosulphonio acid alone, preferably at 50° for 30-60 minutes —fluobenzene (4 4 -difluorodiplienyl-sulphone, m.p. 98°) j iodobenzene (4 4 -di-iododiphenylsulplione, m.p. 202°) o-diclilorobenzene (3 4 3. -4 -tetrachlorodiphenylsulphone, m.p. 176°) and o-dibromobenzene (3 4 3 4 -tetrabromodiphenylsulphone, m.p. 176-177°). The resulting sulphones may be crystallised from glacial acetic acid, benzene or alcohol, and are satisfactory for identification of the original aryl halide. In some cases sulphones accompany the sulphonyl chloride they are readily separated from the final sulphonamide by their insolubility in cold 6N sodium hydroxide solution the sulphonamides dissolve readily and are reprecipitated by 6iV hydrochloric acid. [Pg.543]

Add 25 g. of finely-powdered, dry acetanilide to 25 ml. of glacial acetic acid contained in a 500 ml. beaker introduce into the well-stirred mixture 92 g. (50 ml.) of concentrated sulphuric acid. The mixture becomes warm and a clear solution results. Surround the beaker with a freezing mixture of ice and salt, and stir the solution mechanically. Support a separatory funnel, containing a cold mixture of 15 -5 g. (11 ml.) of concentrated nitric acid and 12 -5 g. (7 ml.) of concentrated sulphuric acid, over the beaker. When the temperature of the solution falls to 0-2°, run in the acid mixture gradually while the temperature is maintained below 10°. After all the mixed acid has been added, remove the beaker from the freezing mixture, and allow it to stand at room temperature for 1 hour. Pour the reaction mixture on to 250 g. of crushed ice (or into 500 ml. of cold water), whereby the crude nitroacetanilide is at once precipitated. Allow to stand for 15 minutes, filter with suction on a Buchner funnel, wash it thoroughly with cold water until free from acids (test the wash water), and drain well. Recrystallise the pale yellow product from alcohol or methylated spirit (see Section IV,12 for experimental details), filter at the pump, wash with a httle cold alcohol, and dry in the air upon filter paper. [The yellow o-nitroacetanihde remains in the filtrate.] The yield of p-nitroacetanihde, a colourless crystalline sohd of m.p. 214°, is 20 g. [Pg.581]

Heat the amine with one or two mols of redistilled benzaldehyde (according as to whether the base is a monamine or diamine) to 100° for 10 minutes if the molecular weight is unknown, use 1 g. of the base and 1 or 2 g. of benzaldehyde. Sometimes a solvent, such as alcohol (5 ml.) or acetic acid, may be used. Recrystallise from alcohol, dilute alcohol or benzene. [Pg.654]

Dissolve 1 0 g. (or 10 ml.) of the amine and 1 0 g. of 2 4-dinitrochloro-benzene in 5-10 ml. of ethanol, add a slight excess of anhydrous potassium carbonate or of powdered fused sodium acetate, reflux the mixture on a water bath for 20-30 minutes, and then pour into water. Wash the precipitated solid with dilute sodium carbonate solution, followed by dilute hydrochloric acid. Recrystallise from ethanol, dilute alcohol or glacial acetic acid. [Pg.654]

Method 2. Place 0-2 g. of cupric acetate, 10 g. of ammonium nitrate, 21 2 g. of benzoin and 70 ml. of an 80 per cent, by volume acetic acid -water solution in a 250 ml. flask fitted with a reflux condenser. Heat the mixture with occasional shaking (1). When solution occurs, a vigorous evolution of nitrogen is observed. Reflux for 90 minutes, cool the solution, seed the solution with a crystal of benzil (2), and allow to stand for 1 hour. Filter at the pump and keep the mother liquor (3) wash well with water and dry (preferably in an oven at 60°). The resulting benzil has m.p. 94-95° and the m.p. is unaffected by recrystallisation from alcohol or from carbon tetrachloride (2 ml. per gram). Dilution of the mother liquor with the aqueous washings gives a further 1 Og. of benzil (4). [Pg.715]

Add 0-1 ml. of concentrated sulphuric acid or of 72 per cent, perchloric acid cautiously to a cold solution of 0 01 mol (or 1 0 g.) of the quinone in 3-5 ml. of acetic anhydride. Do not permit the temperature to rise above 50°. AUow to stand for 15-30 minutes and pour into 15 ml, of water. Collect the precipitated sohd and recrystaUise it from alcohol. [Pg.749]

In a 500 ml. Pyrex round-bottomed flask, provided with a reflux condenser, place a mixture of 40 g. of freshly-distUled phenylhydrazine (Section IV.89) and 14 g. of urea (previously dried for 3 hours at 100°). Immerse the flask in an oil bath at 155°. After about 10 minutes the urea commences to dissolve accompanied by foaming due to evolution of ammonia the gas evolution slackens after about 1 hour. Remove the flask from the oil bath after 135 minutes, allow it to cool for 3 minutes, and then add 250 ml. of rectified spirit to the hot golden-yellow oil some diphenylcarbazide will crystallise out. Heat under reflux for about 15 minutes to dissolve the diphenylcarbazide, filter through a hot water funnel or a pre-heated Buchner fuimel, and cool the alcoholic solution rapidly in a bath of ice and salt. After 30 minutes, filter the white crystals at the pump, drain well, and wash twice with a little ether. Dry upon filter paper in the air. The yield of diphenylcarbazide, m.p. 171 °, is 34 g. A further 7 g. may be obtained by concentrating the filtrate under reduced pressure. The compound may be recrystallised from alcohol or from glacial acetic acid. [Pg.955]

Until World War 1 acetone was manufactured commercially by the dry distillation of calcium acetate from lime and pyroligneous acid (wood distillate) (9). During the war processes for acetic acid from acetylene and by fermentation supplanted the pyroligneous acid (10). In turn these methods were displaced by the process developed for the bacterial fermentation of carbohydrates (cornstarch and molasses) to acetone and alcohols (11). At one time Pubhcker Industries, Commercial Solvents, and National Distillers had combined biofermentation capacity of 22,700 metric tons of acetone per year. Biofermentation became noncompetitive around 1960 because of the economics of scale of the isopropyl alcohol dehydrogenation and cumene hydroperoxide processes. [Pg.94]

Acidic Cation-Exchange Resins. Brmnsted acid catalytic activity is responsible for the successful use of acidic cation-exchange resins, which are also soHd acids. Cation-exchange catalysts are used in esterification, acetal synthesis, ester alcoholysis, acetal alcoholysis, alcohol dehydration, ester hydrolysis, and sucrose inversion. The soHd acid type permits simplified procedures when high boiling and viscous compounds are involved because the catalyst can be separated from the products by simple filtration. Unsaturated acids and alcohols that can polymerise in the presence of proton acids can thus be esterified directiy and without polymerisation. [Pg.564]

In the first step of the reaction, the acetoxylation of propylene is carried out in the gas phase, using soHd catalyst containing pahadium as the main catalyst at 160—180°C and 0.49—0.98 MPa (70—140 psi). Components from the reactor are separated into Hquid components and gas components. The Hquid components containing the product, ahyl acetate, are sent to the hydrolysis process. The gas components contain unreacted gases and CO2. After removal of CO2, the unreacted gases, are recycled to the reactor. In the second step, the hydrolysis, which is an equhibrium reaction of ahyl acetate, an acid catalyst is used. To simplify the process, a sohd acid catalyst such as ion-exchange resin is used, and the reaction is carried out at the fixed-bed Hquid phase. The reaction takes place under the mild condition of 60—80°C and ahyl alcohol is selectively produced in almost 100% yield. Acetic acid recovered from the... [Pg.74]

Plasticizers. Plasticizers are materials that soften and flexibilize inherently rigid, and even britde polymers. Organic esters are widely used as plasticizers in polymers (97,98). These esters include the benzoats, phthalates, terephthalates, and trimeUitates, and aUphatic dibasic acid esters. Eor example, triethylene glycol bis(2-ethylbutyrate) [95-08-9] is a plasticizer for poly(vinyl butyral) [63148-65-2] which is used in laminated safety glass (see Vinyl POLYMERS, poly(vinyl acetals)). Di(2-ethyUiexyl)phthalate [117-81-7] (DOP) is a preeminent plasticizer. Variation of acid and/or alcohol component(s) modifies the efficacy of the resultant ester as a plasticizer. In phthalate plasticizers, molecular sizes of the alcohol moiety can be varied from methyl to tridecyl to control permanence, compatibiUty, and efficiency branched (eg, 2-ethylhexyl, isodecyl) for rapid absorption and fusion linear (C6—Cll) for low temperature flexibiUty and low volatility and aromatic (benzyl) for solvating. Terephthalates are recognized for their migration resistance, and trimeUitates for their low volatility in plasticizer appHcations. [Pg.396]

Amlnoacrldlne (6) 4 (37 g 0 2 mol) glycerol (150 g) formic acid (9 2 g, 0 2 mol) and cone HCI (17 ml) were healed to 155 C maintained at this temp (or 30 min and heated to 175 C (or 30 mm The product was treated with scdium acetate (10 g) in water (400 mL) After filtration of N N diphenylproflavine the filtrate was treated with NaOH solution and boiled to precipitate the crude product After recrystallization from alcohol there was obtained 6 23 g (59%), mp216°C... [Pg.32]


See other pages where Acids acetic from alcohol is mentioned: [Pg.236]    [Pg.893]    [Pg.241]    [Pg.348]    [Pg.684]    [Pg.948]    [Pg.948]    [Pg.949]    [Pg.1002]    [Pg.1007]    [Pg.118]    [Pg.118]    [Pg.227]    [Pg.332]    [Pg.381]    [Pg.401]    [Pg.470]    [Pg.580]    [Pg.613]    [Pg.623]    [Pg.722]    [Pg.976]    [Pg.997]    [Pg.1046]    [Pg.285]    [Pg.293]    [Pg.202]    [Pg.502]    [Pg.380]   


SEARCH



Acetal from

Acetals alcohols

Acetals from alcohols

Alcohols acetates

© 2024 chempedia.info