Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts cation exchange

Membrane is the catalyst Cation exchange membranes for esterification reactions Palladium membranes for hydrogenation/dehydrogenation reactions... [Pg.278]

The exchange resins 6nd application in (i) the purification of water (cation-exchange resin to remove salts, followed by anion-exchange resin to remove free mineral acids and carbonic acid), (ii) removal of inorganic impurities from organic substances, (iii) in the partial separation of amino acids, and (iv) as catalysts in organic reactions (e.g., esterification. Section 111,102, and cyanoethylation. Section VI,22). [Pg.1020]

Direct, acid catalyzed esterification of acryhc acid is the main route for the manufacture of higher alkyl esters. The most important higher alkyl acrylate is 2-ethyIhexyi acrylate prepared from the available 0x0 alcohol 2-ethyl-1-hexanol (see Alcohols, higher aliphatic). The most common catalysts are sulfuric or toluenesulfonic acid and sulfonic acid functional cation-exchange resins. Solvents are used as entraining agents for the removal of water of reaction. The product is washed with base to remove unreacted acryhc acid and catalyst and then purified by distillation. The esters are obtained in 80—90% yield and in exceUent purity. [Pg.156]

Deamidation of soy and other seed meal proteins by hydrolysis of the amide bond, and minimization of the hydrolysis of peptide bonds, improves functional properties of these products. For example, treatment of soy protein with dilute (0.05 A/) HCl, with or without a cation-exchange resin (Dowex 50) as a catalyst (133), with anions such as bicarbonate, phosphate, or chloride at pH 8.0 (134), or with peptide glutaminase at pH 7.0 (135), improved solubiHty, whipabiHty, water binding, and emulsifying properties. [Pg.470]

Acidic Cation-Exchange Resins. Brmnsted acid catalytic activity is responsible for the successful use of acidic cation-exchange resins, which are also soHd acids. Cation-exchange catalysts are used in esterification, acetal synthesis, ester alcoholysis, acetal alcoholysis, alcohol dehydration, ester hydrolysis, and sucrose inversion. The soHd acid type permits simplified procedures when high boiling and viscous compounds are involved because the catalyst can be separated from the products by simple filtration. Unsaturated acids and alcohols that can polymerise in the presence of proton acids can thus be esterified directiy and without polymerisation. [Pg.564]

Although catalytic hydration of ethylene oxide to maximize ethylene glycol production has been studied by a number of companies with numerous materials patented as catalysts, there has been no reported industrial manufacture of ethylene glycol via catalytic ethylene oxide hydrolysis. Studied catalysts include sulfonic acids, carboxyUc acids and salts, cation-exchange resins, acidic zeoHtes, haUdes, anion-exchange resins, metals, metal oxides, and metal salts (21—26). Carbon dioxide as a cocatalyst with many of the same materials has also received extensive study. [Pg.359]

Mesityl oxide can also be produced by the direct condensation of acetone at higher temperatures. This reaction can be operated ia the vapor phase over 2iac oxide (182), or 2iac oxide—2irconium oxide (183), or ia the Hquid phase over cation-exchange resia (184) or 2irconium phosphate (185). Other catalysts are known (186). [Pg.494]

Dispersed Metals. Bifimctional zeoHte catalysts, principally zeoHte Y, are used in commercial processes such as hydrocracking. These are acidic zeoHtes containing dispersed metals such as platinum or palladium. The metals are introduced by cation exchange of the ammine complexes, foUowed by a reductive decomposition (21) ... [Pg.449]

The choice of catalyst is based primarily on economic effects and product purity requirements. More recentiy, the handling of waste associated with the choice of catalyst has become an important factor in the economic evaluation. Catalysts that produce less waste and more easily handled waste by-products are strongly preferred by alkylphenol producers. Some commonly used catalysts are sulfuric acid, boron trifluoride, aluminum phenoxide, methanesulfonic acid, toluene—xylene sulfonic acid, cationic-exchange resin, acidic clays, and modified zeoHtes. [Pg.62]

Esterification. Extensive commercial use is made of primary amyl acetate, a mixture of 1-pentyl acetate [28-63-7] and 2-metliylbutyl acetate [53496-15-4]. Esterifications with acetic acid are generally conducted in the Hquid phase in the presence of a strong acid catalyst such as sulfuric acid (34). Increased reaction rates are reported when esterifications are carried out in the presence of heteropoly acids supported on macroreticular cation-exchange resins (35) and 2eohte (36) catalysts in a heterogeneous process. Judging from the many patents issued in recent years, there appears to be considerable effort underway to find an appropriate soHd catalyst for a reactive distillation esterification process to avoid the product removal difficulties of the conventional process. [Pg.373]

Figure 1 shows the mechanistic picture developed by C. M. Starks (1,2) for Hquid—Hquid PTC in a graphical form. The catalyst cation extracts the more hpholilic anion Y from the aqueous to the nonpolar organic phase where it is present in the form of a poorly solvated ion pair Y ]. This then reacts rapidly with RX, and the newly formed ion pair X ] returns to the aqueous phase for another exchange process X — Y . In practice most catalyst cations used are rather lipophilic and do not extract strongly into the aqueous phase so that the anions are exchanged at the phase boundary. [Pg.186]

Catalysts. The choice of the proper catalyst for an esterification reaction is dependent on several factors (43—46). The most common catalysts used are strong mineral acids such as sulfuric and hydrochloric acids. Lewis acids such as boron trifluoride, tin and zinc salts, aluminum haHdes, and organo—titanates have been used. Cation-exchange resins and zeoHtes are often employed also. [Pg.376]

Despite the higher cost compared with ordinary catalysts, such as sulfuric or hydrochloric acid, the cation exchangers present several features that make their use economical. The abiHty to use these agents in a fixed-bed reactor operation makes them attractive for a continuous process (50,51). Cation-exchange catalysts can be used also in continuous stirred tank reactor (CSTR) operation. [Pg.376]

Ethyl Acetate. The esterification of ethanol by acetic acid was studied in detail over a century ago (357), and considerable Hterature exists on deterrninations of the equiUbrium constant for the reaction. The usual catalyst for the production of ethyl acetate [141-78-6] is sulfuric acid, but other catalysts have been used, including cation-exchange resins (358), a- uoronitrites (359), titanium chelates (360), and quinones and their pardy reduced products. [Pg.416]

Hydration and dehydration employ catalysts that have a strong affinity for water. Alumina is the principal catalyst, but also used are aluminosihcates, metal salts and phosphoric acid or its metal salts on carriers, and cation exchange resins. [Pg.2094]

Other possibilities for practical application of resin catalysis include some organic reactions involving addition, cyclization, and structural rearrangement. Increased stability and specific control of structure has led to the increased use of cation exchange resins as catalysts. As in the case of cation exchange resins many... [Pg.775]

The rate of hydrolysis of sarin on Dowex-50 cation exchange resin is insensitive to the stirring rate. However, with a more active catalyst (Amberlite-IRA 400), the rate constant at 20°C was 5.3, 7.5, and 8.5 h at 60,800 and 1000 revolutions/min , respectively, suggesting that film diffusion was the rate-limiting. step. Thus, the mechanism of the rate-limiting step depends on the nature of the catalyst [34]. [Pg.780]

In the liquid-phase process, high pressures in the range of 80-100 atmospheres are used. A sulfonated polystyrene cation exchange resin is the catalyst commonly used at about 150°C. An isopropanol yield of 93.5% can be realized at 75% propylene conversion. The only important byproduct is diisopropyl ether (about 5%). Figure 8-4 is a flow diagram of the propylene hydration process. ... [Pg.227]

Hammet and collaborators140, 141 studied in more detail the hydrolysis of aliphatic esters with a cation-exchange resins as catalyst. They found that replacement of 70% of the hydrogen ions in a crosslinked polystyrenesulfonic add by cetyl-trimethylammonium ions had a specifically favorable effect on the effectiveness of the remaining hydrogen ions for the hydrolysis of ethyl-n-hexanoate. From these findings, the important contributions of the hydrophobic forces, in addition to the electrostatic forces, is clearly demonstrated. [Pg.168]

Electrochemical studies, in combination with EPR measurements, of the analogous non-chiral occluded (salen)Mn complex in Y zeoUte showed that only a small proportion of the complex, i.e., that located on the outer part of the support, is accessible and takes part in the catalytic process [26]. Only this proportion (about 20%) is finally oxidized to Mn and hence the amount of catalyst is much lower than expected. This phenomenon explains the low catalytic activity of this system. We have considered other attempts at this approach using zeolites with larger pore sizes as examples of cationic exchange and these have been included in Sect. 3.2.3. [Pg.162]

In spite of these limitations, three examples of (salen)-metal complex adsorption have been described. In the first one, Jacobsen s complex (la-MnCl) was adsorbed on Al-MCM-41 [27] by impregnation with a solution of the complex in dichloromethane, an approach that prevents the possible cationic exchange. The results in the epoxidation of 1,2-dihydronaphthalene with aqueous NaOCl were comparable to those obtained in solution, with only a slight reduction in enantioselectivity (55% ee instead of 60% ee). However, recycling of this catalyst was not described. [Pg.162]

This i>aper describes two broad types of intercalation conpomds which are based on graphite on the one hand and sheet aluminosilicate (clay) hosts on the other. Taken together these provide a rich veiriety of examples of heterogeneously catalysed reactions. Appropriately cation exchanged clays, for example, act as efficient catalysts for a number of commercially important proton catalysed reactions (10-13) (see Table I). Graphite intercalates, whilst also capable of... [Pg.472]

It is well known also that higher alkanes suffer radical gas phase oxidation above 723 K. Therefore, their use requires catalysts active and selective for deNOx at lower temperatures. The mechanism of NOx elimination is still debated a redox mechanism involving Cu ions is probable, and isolated Cu cations exchanged into MFI [4,5] or mordenite [6] have been found to be more active than CuO clusters. It must be emphasized, however, that acid zeolites exhibit good activity at high temperature, and acid mechanisms have been proposed [7-10]. In presence of Cu this acid mechanism disappears probably due to the decrease of the acidity of mordenite upon Cu exchange [6]. According to... [Pg.621]


See other pages where Catalysts cation exchange is mentioned: [Pg.146]    [Pg.340]    [Pg.146]    [Pg.340]    [Pg.464]    [Pg.491]    [Pg.454]    [Pg.374]    [Pg.106]    [Pg.109]    [Pg.110]    [Pg.16]    [Pg.416]    [Pg.102]    [Pg.174]    [Pg.212]    [Pg.376]    [Pg.376]    [Pg.777]    [Pg.777]    [Pg.778]    [Pg.782]    [Pg.208]    [Pg.53]    [Pg.130]    [Pg.164]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Catalyst cationic

Cation exchange

Cation exchangers

Cationic exchangers

Cations cation exchange

Exchangeable cations

© 2024 chempedia.info