Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol acetals from

Syn SOI (1981) (preparation of acetals from alcohols or oxiranes and carbonyl compounds)... [Pg.961]

F. A. J. Meskens, Methods for the Preparation of Acetals from Alcohols or Oxiranes and Carbonyl ( (impounds, Synthesis 1981, 501. [Pg.394]

Aldehydes can be converted directly into 0,Se-acetals and used for radical cyclizations. This procedure is equivalent to a ketyl radical cyclization process, a typical example is shown in Eq. (13) [31]. Acetals such as 54 can also easily be converted into 0,Se-acetals by treatment with (z-Bu)2AlSePh. The selenide 55 is used for an efficient radical carbon-carbon bond formation [Eq. (14)1 [32]. A very reliable route to 0,Se-acetals from alcohols through the corresponding (tributylstannyl)methyl ethers has been used for the preparation of tetrahydro-furan derivatives [33]. [Pg.90]

Preparation of Ethyl Acetate from Alcohol and Acetic Acid.—(SECTION 160). —Mix in a dry 200 cc. distilling flask 50 grams of alcohol, 60 grams of glacial acetic acid, and 4 cc. of 1 If barium carbonate is not available, calcium carbonate may be used. [Pg.78]

Table 13.3.4 Effect of solvent on the rate of used PTC technique to synthesize form-reaction of thiophenoxide and bromooctane aldehyde acetals from alcohol and di-... Table 13.3.4 Effect of solvent on the rate of used PTC technique to synthesize form-reaction of thiophenoxide and bromooctane aldehyde acetals from alcohol and di-...
Further studies revealed that temperatures of 130°C and above are necessary for the formation of acetals from alcohols and added HCl has no influence. We believe that the reaction proceeds via enolether intermediates (Fig. 10, 17), which are generated by water elimination fi om the initially formed hemiacetals. This is supported by the observation of E, Z-mixtures of enolether intermediates 17 in the reaction mixture. In line with this postulate, reaction of complex 16 with benzyl alcohol (under neutral conditions), which lacks p-hydrogens and cannot form an enolether, did not yield benzylacetal rather, benzylbenzoate was quantitatively formed. Thus, formation of the acetal product likely takes place by the addition of alcohols to the C=C bond of the enolether (route b. Fig. 10). It is not clear at this... [Pg.66]

Suspend 0 25 g. of 2 4-dinitrophenylhydrazine in 5 ml. of methanol and add 0-4 0-5 ml. of concentrated sulphuric acid cautiously. FUter the warm solution and add a solution of 0 1-0-2 g. of the carbonyl compound in a small volume of methanol or of ether. If no sohd separate within 10 minutes, dUute the solution carefuUy with 2N sulphuric acid. CoUect the solid by suction filtration and wash it with a little methanol. RecrystaUise the derivative from alcohol, dUute alcohol, alcohol with ethyl acetate or chloroform or acetone, acetic acid, dioxan, nitromethane, nitrobenzene or xylene. [Pg.344]

Dissolve 0 5 g. of the primary amine and 0-5 g. of pure phthaUc anhydride in 5 ml. of glacial acetic acid and reflux for 20-30 minutes. (If the amine salt is used, add 1 g. of sodium acetate.) The N-substituted phthaUmide separates out on cooling. Recrystallise it from alcohol or from glacial acetic acid. [Pg.423]

Preparation of the sulphones. Dissolve the 2 4-dinitrophenyl-sulphide in the minimum volume of warm glacial acetic acid and add 3 per cent, potassium permanganate solution with shaking as fast as decolourisation occurs. Use a 50 per cent, excess of potassium permanganate if the sulphide tends to precipitate, add more acetic acid. Just decolourise the solution with sulphur dioxide (or with sodium bisulphite or alcohol) and add 2-3 volumes of crushed ice. Filter off the sulphone, dry, and recrystaUise from alcohol. [Pg.501]

Picrates are usually prepared by mixing solutions of equivalent quantities of the two components in the minimum volume of rectified spirit and allowing to cool the derivative separates in a crystalline condition. It is filtered off, washed with a little ether, and pressed on a porous tUe. If the picrate is stable, it is recrystaUised from alcohol, ethyl acetate or ether. [Pg.518]

Diphenyl. Reflux a mixture of 1 g, of diphenyl, 2 ml. of glacial acetic acid and 0 -5 ml. of fuming nitric acid for 10 minutes. Pour into 20 ml. of cold water, filter oflF the precipitate, wash it with cold water imtil free from acid, and recrystallise from alcohol. The product is 4-nitrodiphenyl, m.p. 114°,... [Pg.520]

Add 25 g. of finely-powdered, dry acetanilide to 25 ml. of glacial acetic acid contained in a 500 ml. beaker introduce into the well-stirred mixture 92 g. (50 ml.) of concentrated sulphuric acid. The mixture becomes warm and a clear solution results. Surround the beaker with a freezing mixture of ice and salt, and stir the solution mechanically. Support a separatory funnel, containing a cold mixture of 15 -5 g. (11 ml.) of concentrated nitric acid and 12 -5 g. (7 ml.) of concentrated sulphuric acid, over the beaker. When the temperature of the solution falls to 0-2°, run in the acid mixture gradually while the temperature is maintained below 10°. After all the mixed acid has been added, remove the beaker from the freezing mixture, and allow it to stand at room temperature for 1 hour. Pour the reaction mixture on to 250 g. of crushed ice (or into 500 ml. of cold water), whereby the crude nitroacetanilide is at once precipitated. Allow to stand for 15 minutes, filter with suction on a Buchner funnel, wash it thoroughly with cold water until free from acids (test the wash water), and drain well. Recrystallise the pale yellow product from alcohol or methylated spirit (see Section IV,12 for experimental details), filter at the pump, wash with a httle cold alcohol, and dry in the air upon filter paper. [The yellow o-nitroacetanihde remains in the filtrate.] The yield of p-nitroacetanihde, a colourless crystalline sohd of m.p. 214°, is 20 g. [Pg.581]

Heat the amine with one or two mols of redistilled benzaldehyde (according as to whether the base is a monamine or diamine) to 100° for 10 minutes if the molecular weight is unknown, use 1 g. of the base and 1 or 2 g. of benzaldehyde. Sometimes a solvent, such as alcohol (5 ml.) or acetic acid, may be used. Recrystallise from alcohol, dilute alcohol or benzene. [Pg.654]

Method 2. Place 0-2 g. of cupric acetate, 10 g. of ammonium nitrate, 21 2 g. of benzoin and 70 ml. of an 80 per cent, by volume acetic acid -water solution in a 250 ml. flask fitted with a reflux condenser. Heat the mixture with occasional shaking (1). When solution occurs, a vigorous evolution of nitrogen is observed. Reflux for 90 minutes, cool the solution, seed the solution with a crystal of benzil (2), and allow to stand for 1 hour. Filter at the pump and keep the mother liquor (3) wash well with water and dry (preferably in an oven at 60°). The resulting benzil has m.p. 94-95° and the m.p. is unaffected by recrystallisation from alcohol or from carbon tetrachloride (2 ml. per gram). Dilution of the mother liquor with the aqueous washings gives a further 1 Og. of benzil (4). [Pg.715]

Add 0-1 ml. of concentrated sulphuric acid or of 72 per cent, perchloric acid cautiously to a cold solution of 0 01 mol (or 1 0 g.) of the quinone in 3-5 ml. of acetic anhydride. Do not permit the temperature to rise above 50°. AUow to stand for 15-30 minutes and pour into 15 ml, of water. Collect the precipitated sohd and recrystaUise it from alcohol. [Pg.749]

In a 500 ml. Pyrex round-bottomed flask, provided with a reflux condenser, place a mixture of 40 g. of freshly-distUled phenylhydrazine (Section IV.89) and 14 g. of urea (previously dried for 3 hours at 100°). Immerse the flask in an oil bath at 155°. After about 10 minutes the urea commences to dissolve accompanied by foaming due to evolution of ammonia the gas evolution slackens after about 1 hour. Remove the flask from the oil bath after 135 minutes, allow it to cool for 3 minutes, and then add 250 ml. of rectified spirit to the hot golden-yellow oil some diphenylcarbazide will crystallise out. Heat under reflux for about 15 minutes to dissolve the diphenylcarbazide, filter through a hot water funnel or a pre-heated Buchner fuimel, and cool the alcoholic solution rapidly in a bath of ice and salt. After 30 minutes, filter the white crystals at the pump, drain well, and wash twice with a little ether. Dry upon filter paper in the air. The yield of diphenylcarbazide, m.p. 171 °, is 34 g. A further 7 g. may be obtained by concentrating the filtrate under reduced pressure. The compound may be recrystallised from alcohol or from glacial acetic acid. [Pg.955]

Since (A) does not contain any other functional group in addition to the formyl group, one may predict that suitable reaction conditions could be found for all conversions into (A). Many other alternative target molecules can, of course, be formulated. The reduction of (H), for example, may require introduction of a protecting group, e.g. acetal formation. The industrial synthesis of (A) is based upon the oxidation of (E) since 3-methylbutanol (isoamyl alcohol) is a cheap distillation product from alcoholic fermentation ( fusel oils ). The second step of our simple antithetic analysis — systematic disconnection — will now be exemplified with all target molecules of the scheme above. For the sake of brevity we shall omit the syn-thons and indicate only the reagents and reaction conditions. [Pg.198]

The position of equilibrium is favorable for acetal formation from most aldehydes especially when excess alcohol is present as the reaction solvent For most ketones the position of equilibrium is unfavorable and other methods must be used for the prepara tion of acetals from ketones... [Pg.722]

Until World War 1 acetone was manufactured commercially by the dry distillation of calcium acetate from lime and pyroligneous acid (wood distillate) (9). During the war processes for acetic acid from acetylene and by fermentation supplanted the pyroligneous acid (10). In turn these methods were displaced by the process developed for the bacterial fermentation of carbohydrates (cornstarch and molasses) to acetone and alcohols (11). At one time Pubhcker Industries, Commercial Solvents, and National Distillers had combined biofermentation capacity of 22,700 metric tons of acetone per year. Biofermentation became noncompetitive around 1960 because of the economics of scale of the isopropyl alcohol dehydrogenation and cumene hydroperoxide processes. [Pg.94]

Acidic Cation-Exchange Resins. Brmnsted acid catalytic activity is responsible for the successful use of acidic cation-exchange resins, which are also soHd acids. Cation-exchange catalysts are used in esterification, acetal synthesis, ester alcoholysis, acetal alcoholysis, alcohol dehydration, ester hydrolysis, and sucrose inversion. The soHd acid type permits simplified procedures when high boiling and viscous compounds are involved because the catalyst can be separated from the products by simple filtration. Unsaturated acids and alcohols that can polymerise in the presence of proton acids can thus be esterified directiy and without polymerisation. [Pg.564]

Ketones and esters are required for C-type inks. Types of esters are ethyl acetate, isopropyl acetate, normal propyl acetate, and butyl acetate. From the ketone class, acetone or methyl ethyl ketone (MEK) can be used. The usual solvent for D-type inks are mixtures of an alcohol, such as ethyl alcohol or isopropyl alcohol, with either aUphatic or aromatic hydrocarbons. Commonly used mixtures are 50/50 blends by volume of alcohol and aUphatic hydrocarbon. [Pg.252]

Aminophenol. This compound forms white plates when crystallized from water. The base is difficult to maintain in the free state and deteriorates rapidly under the influence of air to pink-purple oxidation products. The crystals exist in two forms. The a-form (from alcohol, water, or ethyl acetate) is the more stable and has an orthorhombic pyramidal stmcture containing four molecules per unit cell. It has a density of 1.290 g/cm (1.305 also quoted). The less stable P-form (from acetone) exists as acicular crystals that turn into the a-form on standing they are orthorhombic bipyramidal or pyramidal and have a hexamolecular unit (15,16,24) (see Tables 3—5). [Pg.309]

Riboflavin forms fine yellow to orange-yeUow needles with a bitter taste from 2 N acetic acid, alcohol, water, or pyridine. It melts with decomposition at 278—279°C (darkens at ca 240°C). The solubihty of riboflavin in water is 10—13 mg/100 mL at 25—27.5°C, and in absolute ethanol 4.5 mg/100 mL at 27.5°C it is slightly soluble in amyl alcohol, cyclohexanol, benzyl alcohol, amyl acetate, and phenol, but insoluble in ether, chloroform, acetone, and benzene. It is very soluble in dilute alkah, but these solutions are unstable. Various polymorphic crystalline forms of riboflavin exhibit variations in physical properties. In aqueous nicotinamide solution at pH 5, solubihty increases from 0.1 to 2.5% as the nicotinamide concentration increases from 5 to 50% (9). [Pg.75]

Product recoveiy from reversed micellar solutions can often be attained by simple back extrac tion, by contacting with an aqueous solution having salt concentration and pH that disfavors protein solu-bihzation, but this is not always a reliable method. Addition of cosolvents such as ethyl acetate or alcohols can lead to a disruption of the micelles and expulsion of the protein species, but this may also lead to protein denaturation. These additives must be removed by distillation, for example, to enable reconstitution of the micellar phase. Temperature increases can similarly lead to product release as a concentrated aqueous solution. Removal of the water from the reversed micelles by molecular sieves or sihca gel has also been found to cause a precipitation of the protein from the organic phase. [Pg.2061]


See other pages where Alcohol acetals from is mentioned: [Pg.179]    [Pg.378]    [Pg.179]    [Pg.378]    [Pg.227]    [Pg.332]    [Pg.579]    [Pg.580]    [Pg.613]    [Pg.623]    [Pg.638]    [Pg.639]    [Pg.722]    [Pg.976]    [Pg.1090]    [Pg.997]    [Pg.285]    [Pg.202]   
See also in sourсe #XX -- [ Pg.997 , Pg.1180 , Pg.1642 ]

See also in sourсe #XX -- [ Pg.381 ]




SEARCH



3- Phenylpropanal, from allyl alcohol and phenylpalladium acetate

Acetal from

Acetals alcohols

Acetals are formed from aldehydes or ketones plus alcohols in the presence of acid

Acetals from enol ethers + alcohols

Acetic acid from ethyl alcohol

Acids acetic from alcohol

Alcohols acetates

Ethyl acetate from acetic acid and alcohol

Ketones and aldehydes, distinguishing from reaction with alcohols to form acetal

© 2024 chempedia.info