Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts, acidic basic

Aramcndia. MA Borau. V Jimenez. C Marinas. JM Porras. A Urbano. FJ. Dehydration-dehydrogenation of 1-phenyleihanoI over acid-basic catalysts. Reaction Kinetics and Catalysis Letters, 1998 65. 25-31. [Pg.121]

In comparison, the basic catalysts play only a minor role. Well-known acidic/basic catalysts are listed in Table 5-27. [Pg.169]

Whereas the Mobil process starts with syn gas based methyl alcohol, Olah s studies were an extension of the previously discussed electrophilic functionalization of methane and does not involve any zeolite-type catalysts. It was found that bifunctional acidic-basic catalysts such as tungsten oxide on alumina or related supported transition metal oxides or oxyfluorides such as alumina or related supported transition metal oxides or oxyfluorides such as tantalum or zirconium oxyfluoride are capable of condensing methyl chloride, methyl alcohol (dimethyl ether), methyl mercaptan (dimethyl sulfide), primarily to ethylene (and propylene) (equation 65) . [Pg.646]

According to Olah s investigations the conversion of methyl alcohol over bifunctional acidic-basic catalyst after initial acid-catalyzed dehydration to dimethyl ether involves oxonium ion formation catalyzed also by the acid functionality of the catalyst. This is followed by basic site catalyzed deprotonation to a reactive surface-bound oxonium ylide, which is then immediately methylated by excess methyl alcohol or dimethyl ether leading to the crucial - 2 conversion step. The ethyl methyl oxonium ion formed subsequently eliminates ethylene. All other hydrocarbons are derived from ethylene by known oligomerization-fragmentation chemistry. Propylene is formed via a cyclopropane intermediate. The overall reaction sequence is depicted in Scheme 19. [Pg.646]

The first approach consists of those systems that utilize molecular hydrogen as the reducing agent. The reaction conditions, such as solvent, acidity/basicity, catalyst type and concentration, hydrogen pressure, and stirring rate have a great effect on the efficiency, stereochemistry, and chemoselectivity of these hydrogenation reactions. [Pg.1118]

Solinas, V. and Ferino, 1. Microcalorimetric characterization of acidic-basic catalysts. Catal. Today 1998, 41, 179-189. [Pg.302]

For acetaldehyde, the half-life of the exchange reaction is on the order of 1 min under neutral conditions, but is considerably faster in acidic or basic media. The second-order rate constant for acid-catalyzed hydration of acetaldehyde is on the order of 500 sec The hydration reaction has been extensively studied because it is the mechanistic prototype for many reactions at carbonyl centers that involve more complex molecules. Hydration is catalyzed by both base and acid. Basic catalysts function by assisting deprotonation of water, giving the more nucleophilic hydroxide ion ... [Pg.404]

TABLE 1. Cfl selectivity (n > 2) of PbO catalysts when using supports of different acidity/basicity (catalyst size 3x2 mm, T = 1013 K, Pch4/Pq2 ... [Pg.290]

V. Solinas, 1. Ferino, Microcalorimetric characterisation of acid-basic catalysts. Catal. Today 41(1-3), 179-189 (1998). doi 10.1016/S0920-5861(98)00048-0... [Pg.49]

It is known that the synthesis of carhinol-terminated polysilox-anes starting from hydroxy-terminated polysiloxanes may he disturbed hy occurrence of competitive depolymerization and condensation processes (1). This is due to the rather harsh reaction conditions (2), since the established synthetic procedures for the hydroxymethylation of hydroxy polysiloxanes require either the presence of acidic/basic catalysts (3), Lewis acids (4) or the prior transformation into Grignard reagent (5). Cyclic alkoxy silanes are very useful reagents for a facile and mild introduction of the hydroxymethyl function into a silanol-terminated polysiloxane. [Pg.286]

Acetaldehyde (and other aldehydes containing at least one hydrogen atom in the a position) when treated with a small quantity of dilute sodium hydr oxide solution or other basic catalyst gives a good yield of aldol (p hydroxy-n-but3Taldehyde) (I), which readily loses water, either by heating the isolated aldol alone or with a trace of mineral acid, to form crotonaldehyde (II) ... [Pg.351]

Basic catalysts other than alkali acetates have been employed in the Perkin reaction thus salicylaldehyde condenses with acetic anhydride in the presence of triethylamine to yield coumarin (tlie lactone of the cis form of o-hydroxy-cinnamio acid) together with some of the acetyl derivative of the trans form (o-acetoxycoumaric acid) ... [Pg.707]

The a-carbon atom of the phenylacetyl group is more susceptible to attack by the basic catalyst (triethylamine) than the acetyl group hence a-phenyl-cinnamic acid, but no cinnamic acid, is obtained. [Pg.708]

The addition of active methylene compounds (ethyl malonate, ethyl aoeto-acetate, ethyl plienylacetate, nltromethane, acrylonitrile, etc.) to the aP-double bond of a conjugated unsaturated ketone, ester or nitrile In the presence of a basic catalyst (sodium ethoxide, piperidine, diethylamiiie, etc.) is known as the Michael reaction or Michael addition. The reaction may be illustrated by the addition of ethyl malonate to ethyl fumarate in the presence of sodium ethoxide hydrolysis and decarboxylation of the addendum (ethyl propane-1 1 2 3-tetracarboxylate) yields trlcarballylic acid ... [Pg.912]

Reagents with carbonyl type groupings exhibit a or (if n. S-unsaturated) a properties. In the presence of acidic or basic catalysts they may react as enol type electron donors (d or d reagents). This reactivity pattern is considered as normal . It allows, for example, syntheses of 1,3- and 1,5-difunctionaI systems via aldol type (a -H d or Michael type (a + d additions. [Pg.17]

Many of the reactions listed at the beginning of this section are acid catalyzed, although a number of basic catalysts are also employed. Esterifications are equilibrium reactions, and the reactions are often carried out at elevated temperatures for favorable rate and equilibrium constants and to shift the equilibrium in favor of the polymer by volatilization of the by-product molecules. An undesired feature of higher polymerization temperatures is the increased probability of side reactions such as the dehydration of the diol or the pyrolysis of the ester. Basic catalysts produce less of the undesirable side reactions. [Pg.300]

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

The cyanoacryhc esters are prepared via the Knoevenagel condensation reaction (5), in which the corresponding alkyl cyanoacetate reacts with formaldehyde in the presence of a basic catalyst to form a low molecular weight polymer. The polymer slurry is acidified and the water is removed. Subsequendy, the polymer is cracked and redistilled at a high temperature onto a suitable stabilizer combination to prevent premature repolymerization. Strong protonic or Lewis acids are normally used in combination with small amounts of a free-radical stabilizer. [Pg.178]

The carbonylation of methanol [67-56-1] to methyl formate ia the presence of basic catalysts has been practiced iadustriaHy for many years. Ia older processes for formic acid utili2ing this reactioa, the methyl formate [107-31-3] reacts with ammonia to give formamide [75-12-7] which is hydroly2ed to formic acid ia the preseace of sulfuric acid ... [Pg.504]

The carboaylatioa of methanol to give formic acid is carried out ia the Hquid phase with the aid of a basic catalyst such as sodium methoxide. It is important to minimi2e the presence of water and carbon dioxide ia the startiag materials, as these cause deactivatioa of the catalyst. The reactioa is an equHibrium, and elevated pressures are necessary to give good conversions. Typical reaction conditions appear to be 80°C, 4.5 MPa (44 atm) pressure and 2.5% w/w of catalyst. Under these conditions the methanol conversion is around 30% (25). [Pg.504]

Aldoketenes also form piedorninantly the lactone dimers, although the ratio of isomers can be influenced by base catalysis. Ketoketenes dimerize symmetrically, and at a slower rate, to 1,3-cyclobutanediones, unless acidic or basic catalysts are present. [Pg.475]

The nitro alcohols available in commercial quantities are manufactured by the condensation of nitroparaffins with formaldehyde [50-00-0]. These condensations are equiUbrium reactions, and potential exists for the formation of polymeric materials. Therefore, reaction conditions, eg, reaction time, temperature, mole ratio of the reactants, catalyst level, and catalyst removal, must be carefully controlled in order to obtain the desired nitro alcohol in good yield (6). Paraformaldehyde can be used in place of aqueous formaldehyde. A wide variety of basic catalysts, including amines, quaternary ammonium hydroxides, and inorganic hydroxides and carbonates, can be used. After completion of the reaction, the reaction mixture must be made acidic, either by addition of mineral acid or by removal of base by an ion-exchange resin in order to prevent reversal of the reaction during the isolation of the nitro alcohol (see Ion exchange). [Pg.61]

PhenoHc resins are prepared by the reaction of phenol or substituted phenol with an aldehyde, especially formaldehyde, in the presence of an acidic or basic catalyst. Their thermosetting character and the exotherm associated with the reaction presented technical barriers to commercialization. In 1900, the first U.S. patent was granted for a phenoHc resin, using the resin in cast form as a substitute for hard mbber (10). [Pg.292]

The unshared pairs of electrons on hydroxyl oxygens seek electron deficient centers. Alkylphenols tend to be less nucleophiUc than aUphatic alcohols as a direct result of the attraction of the electron density by the aromatic nucleus. The reactivity of the hydroxyl group can be enhanced in spite of the attraction of the ring current by use of a basic catalyst which removes the acidic proton from the hydroxyl group leaving the more nucleophiUc alkylphenoxide. [Pg.59]

Propylene oxide and carboxyUc acids ia equimolar ratios produce monoesters of propylene glycol. Higher ratios of oxide to acid produce polypropylene glycol monoesters. In the presence of basic catalysts these monoesters can undergo transesterification reactions that yield a product mixture of propylene glycols, monoesters, and diesters (57,60). [Pg.135]

The relative contributions from these processes strongly depend on the reaction conditions, such as type of solvent, substrate and water concentration, and acidity of catalyst (78,79). It was also discovered that in acid—base inert solvents, such as methylene chloride, the basic assistance requited for the condensation process is provided by another silanol group. This phenomena, called intra—inter catalysis, controls the linear-to-cyclic products ratio, which is constant at a wide range of substrate concentrations. [Pg.46]

When dextrose is heated with methanol containing a small amount of anhydrous hydrogen chloride, a-methyl-D-glucoside is obtained in good yield and can be isolated by crystallization. Similar reactions occur with higher alcohols, but the reaction products are more difficult to isolate by crystallization. Dextrose reacts with acid anhydrides in the presence of basic catalysts, yielding esters. Complete reaction gives the pentaacylated derivative. [Pg.289]

Citral reacts in an aldol condensation using excess acetone and a basic catalyst, usually sodium hydroxide. The excess acetone can be recovered for recycle. The resulting intermediate pseudoionone [141-10-6] (83) after cyclization with phosphoric acid gives predominantly a-ionone [127-41 -3] (84), which is the isomer commercially important in flavors and fragrances. A hydrocarbon solvent is generally necessary in order to get high yields. P-Ionone [14901-07-6] (85) is the predominant isomer if sulfuric acid is used as the catalyst but lower temperature than that for cyclization to a-ionone is required. y-Ionone [79-6-5] (86) is also produced. [Pg.424]

The oxirane ring-opening reaction requires the presence of a basic catalyst. An acidic catalyst also works, but the polymerization of the oxirane limits its usehilness. In the case of 2-mercaptoethanol (eq. 8), the product has been found to be autocatalytic, ie, the product is a catalyst for the reaction. [Pg.11]

The polyaddition reaction is influenced by the stmcture and functionaHty of the monomers, including the location of substituents in proximity to the reactive isocyanate group (steric hindrance) and the nature of the hydroxyl group (primary or secondary). Impurities also influence the reactivity of the system for example, acid impurities in PMDI require partial neutralization or larger amounts of the basic catalysts. The acidity in PMDI can be reduced by heat or epoxy treatment, which is best conducted in the plant. Addition of small amounts of carboxyHc acid chlorides lowers the reactivity of PMDI or stabilizes isocyanate terrninated prepolymers. [Pg.342]

Hydrolysis of vinyl acetate is catalyzed by acidic and basic catalysts to form acetic acid and vinyl alcohol which rapidly tautomerizes to acetaldehyde. This rate of hydrolysis of vinyl acetate is 1000 times that of its saturated analogue, ethyl acetate, ia alkaline media (15). The rate of hydrolysis is minimal at pH 4.44 (16). Other chemical reactions which vinyl acetate may undergo are addition across the double bond, transesterification to other vinyl esters, and oxidation (15—21). [Pg.459]

Synthetic resins, such as phenoHc and cresyUc resins (see Phenolic resins), are the most commonly used friction material binders, and are usually modified with drying oils, elastomer, cardanol [37330-39-5] an epoxy, phosphoms- or boron-based compounds, or even combinations of two. They ate prepared by the addition of the appropriate phenol and formaldehyde [50-00-0] in the presence of an acidic or basic catalyst. Polymerization takes place at elevated temperatures. Other resin systems are based on elastomers (see Elastomers, synthetic), drying oils, or combinations of the above or other polymers. [Pg.274]


See other pages where Catalysts, acidic basic is mentioned: [Pg.251]    [Pg.451]    [Pg.326]    [Pg.40]    [Pg.251]    [Pg.451]    [Pg.326]    [Pg.40]    [Pg.118]    [Pg.164]    [Pg.114]    [Pg.438]    [Pg.478]    [Pg.487]    [Pg.317]    [Pg.134]    [Pg.135]    [Pg.202]    [Pg.328]   
See also in sourсe #XX -- [ Pg.254 ]




SEARCH



Acidic-basic

Acidity/basicity

Basicity catalyst

Catalyst acidity-basicity

Catalyst basic

Isolators Acidic and Basic Catalysts

Solid acid catalysts adsorbed basic probe molecules

© 2024 chempedia.info