Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst basicity

Acetaldehyde (and other aldehydes containing at least one hydrogen atom in the a position) when treated with a small quantity of dilute sodium hydr oxide solution or other basic catalyst gives a good yield of aldol (p hydroxy-n-but3Taldehyde) (I), which readily loses water, either by heating the isolated aldol alone or with a trace of mineral acid, to form crotonaldehyde (II) ... [Pg.351]

The formation of ethyl acetoacetate is an example of a general reaction knowu as the acetoacetlc ester condensation in which an ester having hydrogen on the a-carbon atom condenses with a second molecule of the same ester or with another ester (which may or may not have hydrogen on the a-carbon atom) in the presence of a basic catalyst (sodium, sodium ethoxide, sodamide, sodium triphenylmethide) to form a p-keto-ester. The mechanism of the reaction may be illustrated by the condensation of ethyl acetate with another molecule of ethyl acetate by means of sodium ethoxide. ... [Pg.476]

The first step is the interaction of the basic catalyst with the ester to produce the carbanion (I) the carbanion so formed then attacks the carbonyl carbon of a second molecule of ester to produce the anion (II), which is converted to ethyl acetoacetate (II) by the ejection of an ethoxide ion. Finally (III) reacts with ethoxide ion to produce acetoacetic ester anion (IV). This and other anions are mesomeric thus (IV) may be written ... [Pg.476]

Basic catalysts other than alkali acetates have been employed in the Perkin reaction thus salicylaldehyde condenses with acetic anhydride in the presence of triethylamine to yield coumarin (tlie lactone of the cis form of o-hydroxy-cinnamio acid) together with some of the acetyl derivative of the trans form (o-acetoxycoumaric acid) ... [Pg.707]

The mechanism of the reaction, which is of the aldol type, involves the car-bonyl group of tlie aldehyde and an active methylene group of the anhydride the function of the basic catalyst B (acetate ion 0H3000 or triethylamine N(0,Hb)j) is to form the anion of the active hydrogen component, i.e., by the extraction of a proton from the anhydride ... [Pg.707]

The a-carbon atom of the phenylacetyl group is more susceptible to attack by the basic catalyst (triethylamine) than the acetyl group hence a-phenyl-cinnamic acid, but no cinnamic acid, is obtained. [Pg.708]

The addition of active methylene compounds (ethyl malonate, ethyl aoeto-acetate, ethyl plienylacetate, nltromethane, acrylonitrile, etc.) to the aP-double bond of a conjugated unsaturated ketone, ester or nitrile In the presence of a basic catalyst (sodium ethoxide, piperidine, diethylamiiie, etc.) is known as the Michael reaction or Michael addition. The reaction may be illustrated by the addition of ethyl malonate to ethyl fumarate in the presence of sodium ethoxide hydrolysis and decarboxylation of the addendum (ethyl propane-1 1 2 3-tetracarboxylate) yields trlcarballylic acid ... [Pg.912]

Alternatively, use the following procedure in which triethylamine replaces potassium acetate as the basic catalyst. Place 2 1 g. (2-0 ml.) of purified benzaldehyde, 2 0 ml. of anhydrous triethylamine and 5 0 ml. of A.R. acetic anhydride in a 200 ml. round-bottomed flask, equipped with a short reflux condenser and a calcium chloride drying tube. Boil the solution gently for 24 hours—heating may be interrupted. Incorporate a steam distillation apparatus in the flask and steam distil until the distillate is no longer cloudy (about 100 ml.) and then collect a further 50 ml. of the distillate di ard the steam distillate. Transfer the residue in the flask to a 400 ml. beaker, add water until the vplume is about 200 ml., then 0 2 g. of decolourising carbon, and boil for a few minutes. Filter the hot solution, and acidify the hot filtrate with 1 1 hydrochlorioiaoid... [Pg.1113]

Reagents with carbonyl type groupings exhibit a or (if n. S-unsaturated) a properties. In the presence of acidic or basic catalysts they may react as enol type electron donors (d or d reagents). This reactivity pattern is considered as normal . It allows, for example, syntheses of 1,3- and 1,5-difunctionaI systems via aldol type (a -H d or Michael type (a + d additions. [Pg.17]

The role of the basic catalyst (HO ) is to increase the rate of the nucleophilic addi tion step Hydroxide ion the nucleophile m the base catalyzed reaction is much more reactive than a water molecule the nucleophile m neutral solutions... [Pg.716]

Many of the reactions listed at the beginning of this section are acid catalyzed, although a number of basic catalysts are also employed. Esterifications are equilibrium reactions, and the reactions are often carried out at elevated temperatures for favorable rate and equilibrium constants and to shift the equilibrium in favor of the polymer by volatilization of the by-product molecules. An undesired feature of higher polymerization temperatures is the increased probability of side reactions such as the dehydration of the diol or the pyrolysis of the ester. Basic catalysts produce less of the undesirable side reactions. [Pg.300]

Methyl mercaptan adds to acrolein in neatly quantitative yields in the presence of a variety of basic catalysts (72,73). Other aLkylmercaptopropionaldehydes produced by the reaction of acrolein with a mercaptan are known. Table 8 Hsts a variety of these and their boiling points (74). [Pg.127]

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

The cyanoacryhc esters are prepared via the Knoevenagel condensation reaction (5), in which the corresponding alkyl cyanoacetate reacts with formaldehyde in the presence of a basic catalyst to form a low molecular weight polymer. The polymer slurry is acidified and the water is removed. Subsequendy, the polymer is cracked and redistilled at a high temperature onto a suitable stabilizer combination to prevent premature repolymerization. Strong protonic or Lewis acids are normally used in combination with small amounts of a free-radical stabilizer. [Pg.178]

Pentaerythritol is produced by reaction of formaldehyde [50-00-0] and acetaldehyde [75-07-0] in the presence of a basic catalyst, generally an alkah or alkaline-earth hydroxide. Reaction proceeds by aldol addition to the carbon adjacent to the hydroxyl on the acetaldehyde. The pentaerythrose [3818-32-4] so produced is converted to pentaerythritol by a crossed Cannizzaro reaction using formaldehyde. All reaction steps are reversible except the last, which allows completion of the reaction and high yield industrial production. [Pg.465]

Poly(ethylene oxide)s [25372-68-3] are made by condensation of ethylene oxide with a basic catalyst. In order to achieve a very high molecular weight, water and other compounds that can act as chain terminators must be rigorously excluded. Polymers up to a molecular weight of 8 million are available commercially in the form of dry powders (27). These must be dissolved carefliUy using similar techniques to those used for dry polyacrylamides. Poly(ethylene oxide)s precipitate from water solutions just below the boiling point (see Polyethers, ethylene oxide polymers). [Pg.33]

The carbonylation of methanol [67-56-1] to methyl formate ia the presence of basic catalysts has been practiced iadustriaHy for many years. Ia older processes for formic acid utili2ing this reactioa, the methyl formate [107-31-3] reacts with ammonia to give formamide [75-12-7] which is hydroly2ed to formic acid ia the preseace of sulfuric acid ... [Pg.504]

The carboaylatioa of methanol to give formic acid is carried out ia the Hquid phase with the aid of a basic catalyst such as sodium methoxide. It is important to minimi2e the presence of water and carbon dioxide ia the startiag materials, as these cause deactivatioa of the catalyst. The reactioa is an equHibrium, and elevated pressures are necessary to give good conversions. Typical reaction conditions appear to be 80°C, 4.5 MPa (44 atm) pressure and 2.5% w/w of catalyst. Under these conditions the methanol conversion is around 30% (25). [Pg.504]

The methanol carbonylation is performed ia the presence of a basic catalyst such as sodium methoxide and the product isolated by distillation. In one continuous commercial process (6) the methyl formate and dimethylamine react at 350 kPa (3.46 atm) and from 110 to 120°C to effect a conversion of about 90%. The reaction mixture is then fed to a reactor—stripper operating at about 275 kPa (2.7 atm), where the reaction is completed and DMF and methanol are separated from the lighter by-products. The cmde material is then purified ia a separate distillation column operating at atmospheric pressure. [Pg.513]

A second process is the direct carbonylation of dimethylamine [124-40-3] ia the presence of a basic catalyst or a transition metal. This carbonylation is often mn ia the presence of methanol ia order to help solubilize the catalyst (7), and presumably proceeds through methyl formate as an iatermediate. [Pg.513]

Again, the basic catalyst is typically sodium methoxide, although other bases such as phenoxides (8) and basic anion-exchange resias (9) have also been used. The reaction usiag sodium methoxide is performed at 4.9 MPa (48 atm) and 120°C (10). [Pg.513]

Addition of Hydrogen Cyanide. At one time the predominant commercial route to acrylonitrile was the addition of hydrogen cyanide to acetylene. The reaction can be conducted in the Hquid (CuCl catalyst) or gas phase (basic catalyst at 400 to 600°C). This route has been completely replaced by the ammoxidation of propylene (SOHIO process) (see Acrylonitrile). [Pg.374]

Dimerization is reportedly catalyzed by pyridine [110-86-1] and phosphines. Trialkylphosphines have been shown to catalyze the conversion of dimer iato trimer upon prolonged standing (2,57). Pyridines and other basic catalysts are less selective because the required iacrease ia temperature causes trimerization to compete with dimerization. The gradual conversion of dimer to trimer ia the catalyzed dimerization reaction can be explained by the assumption of equiUbria between dimer and polar catalyst—dimer iatermediates. The polar iatermediates react with excess isocyanate to yield trimer. Factors, such as charge stabilization ia the polar iatermediate and its lifetime or steric requirement, are reported to be important. For these reasons, it is not currently feasible to predict the efficiency of dimer formation given a particular catalyst. [Pg.451]

Aldoketenes also form piedorninantly the lactone dimers, although the ratio of isomers can be influenced by base catalysis. Ketoketenes dimerize symmetrically, and at a slower rate, to 1,3-cyclobutanediones, unless acidic or basic catalysts are present. [Pg.475]

Nitro alcohols react with amines to form nitro amines. Such a reaction can be carried out with a wide variety of primary and secondary amines, both ahphatic and aromatic a basic catalyst is requited if aromatic amines are involved. The products of reactions between dihydric nitro alcohols and amines are nitrodiamines, many of which are good fungicides (qv). Dihydric nitro alcohols, primary amines, and formaldehyde react to yield nitrohexahydropyrimidines (4). Nitrohexahydropyrimidines can be reduced to the corresponding amines, some of which are good fungicides or bactericides, eg, hexetidine [141-94-6] (5-amino-l,3—bis(2-ethylhexyl)-5-methylhexahydropyrimidine). [Pg.61]

The nitro alcohols available in commercial quantities are manufactured by the condensation of nitroparaffins with formaldehyde [50-00-0]. These condensations are equiUbrium reactions, and potential exists for the formation of polymeric materials. Therefore, reaction conditions, eg, reaction time, temperature, mole ratio of the reactants, catalyst level, and catalyst removal, must be carefully controlled in order to obtain the desired nitro alcohol in good yield (6). Paraformaldehyde can be used in place of aqueous formaldehyde. A wide variety of basic catalysts, including amines, quaternary ammonium hydroxides, and inorganic hydroxides and carbonates, can be used. After completion of the reaction, the reaction mixture must be made acidic, either by addition of mineral acid or by removal of base by an ion-exchange resin in order to prevent reversal of the reaction during the isolation of the nitro alcohol (see Ion exchange). [Pg.61]

PhenoHc resins are prepared by the reaction of phenol or substituted phenol with an aldehyde, especially formaldehyde, in the presence of an acidic or basic catalyst. Their thermosetting character and the exotherm associated with the reaction presented technical barriers to commercialization. In 1900, the first U.S. patent was granted for a phenoHc resin, using the resin in cast form as a substitute for hard mbber (10). [Pg.292]

The reaction of phosgene with alcohols yields chloroformates, and with a basic catalyst present, carbonates ate formed ... [Pg.312]

Polyester resins can also be rapidly formed by the reaction of propylene oxide (5) with phthaUc and maleic anhydride. The reaction is initiated with a small fraction of glycol initiator containing a basic catalyst such as lithium carbonate. Molecular weight development is controlled by the concentration of initiator, and the highly exothermic reaction proceeds without the evolution of any condensate water. Although this technique provides many process benefits, the low extent of maleate isomerization achieved during the rapid formation of the polymer limits the reactivity and ultimate performance of these resins. [Pg.314]

The unshared pairs of electrons on hydroxyl oxygens seek electron deficient centers. Alkylphenols tend to be less nucleophiUc than aUphatic alcohols as a direct result of the attraction of the electron density by the aromatic nucleus. The reactivity of the hydroxyl group can be enhanced in spite of the attraction of the ring current by use of a basic catalyst which removes the acidic proton from the hydroxyl group leaving the more nucleophiUc alkylphenoxide. [Pg.59]

Ethoxylation and Propoxylation. Ethylene oxide [75-21-8] or propylene oxide [75-56-9] add readily to primary fatty amines to form bis(2-hydroxyethyl) or bis(2-hydroxypropyl) tertiary amines secondary amines also react with ethylene or propylene oxide to form 2-hydroxyalkyl tertiary amines (1,3,7,33—36). The initial addition is completed at approximately 170°C. Additional ethylene or propylene oxide can be added by using a basic catalyst, usually sodium or potassium hydroxide. [Pg.219]

Alkoxylation. Ethoxylation of toluenediamines proceeds easily. Typical conditions are 90 to 120°C at pressures up to 500 kPa (72.5 psi) using a basic catalyst, eg, potassium hydroxide (13). [Pg.237]

Propylene oxide and carboxyUc acids ia equimolar ratios produce monoesters of propylene glycol. Higher ratios of oxide to acid produce polypropylene glycol monoesters. In the presence of basic catalysts these monoesters can undergo transesterification reactions that yield a product mixture of propylene glycols, monoesters, and diesters (57,60). [Pg.135]

If olefins with electron-withdrawing substituents are involved, the addition can be conducted with a basic catalyst. [Pg.135]

Hydrogen sulfide reacts with nitriles in the presence of a basic catalyst forming thioamides. A commercial example is its addition to cyanamide with the formation of thiourea [62-56-6]. ... [Pg.135]

Sulfur reacts with mercaptans ia the presences of basic catalysts at temperatures of 75—105°C, forming sulfides. These sulfides are usually light ia color and are formed without cross-linking. The sulfurization of mercaptans leads to di-, tri-, or higher polysulfides, depending on the mole ratio used (eqs. 5 and 6). An extensive Hst of references to the sulfurization of mercaptans is available (8). [Pg.206]

When dextrose is heated with methanol containing a small amount of anhydrous hydrogen chloride, a-methyl-D-glucoside is obtained in good yield and can be isolated by crystallization. Similar reactions occur with higher alcohols, but the reaction products are more difficult to isolate by crystallization. Dextrose reacts with acid anhydrides in the presence of basic catalysts, yielding esters. Complete reaction gives the pentaacylated derivative. [Pg.289]

Citral reacts in an aldol condensation using excess acetone and a basic catalyst, usually sodium hydroxide. The excess acetone can be recovered for recycle. The resulting intermediate pseudoionone [141-10-6] (83) after cyclization with phosphoric acid gives predominantly a-ionone [127-41 -3] (84), which is the isomer commercially important in flavors and fragrances. A hydrocarbon solvent is generally necessary in order to get high yields. P-Ionone [14901-07-6] (85) is the predominant isomer if sulfuric acid is used as the catalyst but lower temperature than that for cyclization to a-ionone is required. y-Ionone [79-6-5] (86) is also produced. [Pg.424]

The oxirane ring-opening reaction requires the presence of a basic catalyst. An acidic catalyst also works, but the polymerization of the oxirane limits its usehilness. In the case of 2-mercaptoethanol (eq. 8), the product has been found to be autocatalytic, ie, the product is a catalyst for the reaction. [Pg.11]


See other pages where Catalyst basicity is mentioned: [Pg.118]    [Pg.114]    [Pg.477]    [Pg.478]    [Pg.487]    [Pg.100]    [Pg.303]    [Pg.284]    [Pg.317]    [Pg.134]    [Pg.135]    [Pg.257]   
See also in sourсe #XX -- [ Pg.75 , Pg.84 , Pg.87 ]




SEARCH



Acidic-basic catalyst

Alkylation catalysts, basic

Aluminosilicates basic catalysts

Ammonia catalysts, basic study

Basic Chemistry of Phillips Catalysts

Basic Performance Criteria for a Catalyst Activity, Selectivity and Stability of Enzymes

Basic catalysts aldol condensation

Basic catalysts magnesium oxide

Basic catalysts polymerization

Basic catalysts polymerization mechanism

Basic catalysts types

Basic catalysts zeolites

Basic catalysts, strength

Basic research in aqueous organometallic hydroformylation ligands and catalysts

Basicity of the catalyst

Catalyst acidity-basicity

Catalyst basic

Catalyst basic

Catalysts, general basic types

Chiral basic catalysts

Copper catalysts basic properties

Crude Oil to Gasoline and Basic Building Blocks by Heterogeneous Catalysts

Enzymes as Catalysts in Processes towards Basic Chemicals

Heterogeneous basic catalysts

Isolators Acidic and Basic Catalysts

Ligand-free catalysts basic mechanisms

Metal complex catalysts basic principles

Nickel catalysts basic principles

Oxide catalysts basic

Solid acid catalysts adsorbed basic probe molecules

Solid basic catalysts

Transition metal catalysts basic principles

Weak basic catalysts

© 2024 chempedia.info