Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid derivative, methacrylic

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Dehydrogenation of Propionates. Oxidative dehydrogenation of propionates to acrylates employing vapor-phase reactions at high temperatures (400—700°C) and short contact times is possible. Although selective catalysts for the oxidative dehydrogenation of isobutyric acid to methacrylic acid have been developed in recent years (see Methacrylic ACID AND DERIVATIVES) and a route to methacrylic acid from propylene to isobutyric acid is under pilot-plant development in Europe, this route to acrylates is not presentiy of commercial interest because of the combination of low selectivity, high raw material costs, and purification difficulties. [Pg.156]

Similar mechanical data for a series of ionomers derived from a single ethylene—acryflc acid copolymer have appeared (13) (Table 3). Comparison of the data from Tables 2 and 3 shows that the substitution of acryflc acid for methacrylic acid has only minor effects on properties. [Pg.405]

Developments in aliphatic isocyanates include the synthesis of polymeric aliphatic isocyanates and masked or blocked diisocyanates for appflcafions in which volatility or reactivity ate of concern. Polymeric aliphatic isocyanates ate made by copolymerizing methacrylic acid derivatives, such as 2-isocyanatoethyl methacrylate, and styrene [100-42-5] (100). Blocked isocyanates ate prepared via the reaction of the isocyanate with an active hydrogen compound, such as S-caprolactam, phenol [108-95-2] or acetone oxime. [Pg.459]

Selected physical properties of various methacrylate esters, amides, and derivatives are given in Tables 1—4. Tables 3 and 4 describe more commercially available methacrylic acid derivatives. A2eotrope data for MMA are shown in Table 5 (8). The solubiUty of MMA in water at 25°C is 1.5%. Water solubiUty of longer alkyl methacrylates ranges from slight to insoluble. Some functionalized esters such as 2-dimethylaniinoethyl methacrylate are miscible and/or hydrolyze. The solubiUty of 2-hydroxypropyl methacrylate in water at 25°C is 13%. Vapor—Hquid equiUbrium (VLE) data have been pubHshed on methanol, methyl methacrylate, and methacrylic acid pairs (9), as have solubiUty data for this ternary system (10). VLE data are also available for methyl methacrylate, methacrylic acid, methyl a-hydroxyisobutyrate, methanol, and water, which are the critical components obtained in the commercially important acetone cyanohydrin route to methyl methacrylate (11). [Pg.242]

Photopolymerizable compositions based on monomeric acryflc or other ethylenicaHy unsaturated acid derivatives are becoming increasingly popular. When multiftmctional derivatives are employed, three-dimensional networks having high strength and abrasion resistance are possible on exposure to light. A typical composition may contain an ethoxylated trimethylolpropane triacrylate monomer, a perester phenacjhdene initiator (69), and an acryflc acid—alkyl methacrylate copolymer as binder. [Pg.44]

Brackets signify a trivial name no longer ia use. At 101.3 kPa = 1 atm unless otherwise noted ia kPa as a subscript. At 20°C unless otherwise noted by a superscript number (°C). At 20°C unless otherwise noted. To convert to cal, divide by 4.184. 70°C. Heat of combustion (Uquid). At50°C. To convert kPa to mm Hg, multiply by 7.5. In the alkenoic series of molecular formula 2 2 metbacrylic, undecjlenic, oleic, and emcic acids have important appHcations (Table 2). Acryhc and metbacrylic acids have a petrochemical origin, and undecylenic, oleic, and emcic acids have natural origins (see Acrylic ACID AND DERIVATIVES Methacrylic acid and derivatives). Table 2. Physical Properties of the Straight-Chain Alkenoic Acids, (2n-2) 2 ... [Pg.79]

The mixture of deprotected amino acid derivatives in solution was then immobilized onto a polymeric solid support, typically activated 5-)xm macroporous poly(hydroxyethyl methacrylate-co-ethylene dimethacrylate) beads, to afford the chiral stationary phases with a multiplicity of selectors. Although the use of columns... [Pg.86]

Various A1 organic derivatives A12(S04)j on aluminosilica carriers Amino alcohols Various alcohols and acids Acrylic, Methacrylic 47.69.117) 125,127, 128)... [Pg.67]

Pd/P(t-Bu)., in the presence of Cy2NMe, is an unusually mild and versatile catalyst for Heck reactions of aryl chlorides (Tables 1 and 2) (as well as for room-temperature reactions of aryl bromides).21 22 23 Example A, the coupling of chlorobenzene with butyl methacrylate, illustrates the application of this method to the stereoselective synthesis of a trisubstituted olefin a-methylcinnamic acid derivatives are an important family of compounds that possess biological activity (e.g., hypolipidemic24 and antibiotic25) and serve as intermediates in the synthesis of pharmaceuticals (e.g., Sulindac, a non-steroidal anti-inflammatory drug26). Example B, the coupling of 4-chlorobenzonitrile with styrene, demonstrates that Pd/P(t-Bu). can catalyze the Heck reaction of activated aryl chlorides at room temperature. [Pg.35]

See also Cycloadditions with methacrylic acid/derivatives, 76 237-239... [Pg.242]

Electrophilic addition reactions. See also Addition reactions with butylenes, 4 405-408 of maleic anhydride, 75 490 with methacrylic acid/derivatives, 76 236-237 of propylene, 20 774 Electrophilic aromatic substitution, benzene, 3 599-601 Electrophilic attack, at nitrogen and carbon, 27 98... [Pg.309]

Grafting and networking may modify the mechanical, chemical, and functional properties of polymers and enhance their utilization for some purposes, such as for water treatment (Kumar and Verma, 2007 Mishra et al., 2003). Psyllium derivatives were prepared by grafting acrylonitrile onto psyllium molecules using a ceric ammonium nitrate and nitric acid system (Mishra et al., 2003). The resulted grafted psyllium samples were not soluble in commonly used solvents or their combinations. In 2007, methacrylic acid derivatives of psyllium were prepared using ammonium persulfate as initiator and cross-linked using N,N-methylenebisacryla-mide as the crosslinker (Kumar and Verma, 2007). The modified psyllium... [Pg.214]

Both CO2 activation and enolate formation are combined in the preparation of malonic acid derivatives. The reaction of CO2 with methacrylic esters or methacry-lonitrile and under visible light irradiation produced the corresponding aluminum porphyrin malonate complex. When diethylzinc was added to this system, Al(TPP)Et could be regenerated by axial ligand exchange reactions, and the malonic acid derivatives were formed catalytically with respect to the aluminum porphyrins in a one-pot photosynthetic route (Scheme 1). The first step in this... [Pg.302]

Seki and Tirrell [436] studied the pH-dependent complexation of poly(acrylic acid) derivatives with phospholipid vesicle membranes. These authors found that polyfacrylic acid), poly(methacrylic arid) and poly(ethacrylic acid) modify the properties of a phospholipid vesicle membrane. At or below a critical pH the polymers complex with the membrane, resulting in broadening of the melting transition. The value of the critical pH depends on the chemical structure and tacticity of the polymer and increases with polymer hydro-phobicity from approximately 4.6 for poly(acrylic acid) to approximately 8 for poly(ethacrylic acid). Subsequent photophysical and calorimetric experiments [437] and kinetic studies [398] support the hypothesis that these transitions are caused by pH dependent adsorption of hydrophobic polymeric carboxylic acids... [Pg.35]

Reaction of 2-aminopyridines with acrylic acid or methacrylic acid in boiling water for 2-20 hours gave betaine hydrates 262 (R3 = H) in 11-88% yields (Scheme 20) (92KGS80). When 2-aminopyridine reacted with methyl metharylate in acetic acid for 24 hours or 2-aminopyridine and its 5-bromo and 5-chloro derivatives reacted with acrylic acid in boiling toluene for 24 hours or 2-aminopyridine reacted with crotonic acid in boiling toluene for 20 hours, 3-(2-pyridylamino)propionic acid derivatives 263 were the products. When 5-chloro-2-aminopyridine reacted with acrylic... [Pg.166]

Analogous poly(itaconate)s polymers like poly(ditetrahydrofurfuryl methacrylate) have been also studied because there are at least two advantages in using ita-conate acid based polymers over methacrylate acid derivatives itaconic acid can be obtained through fermentation from renewable, non petrochemical sources and the toxicity of its derivatives is lower than for methacrylate derivatives [64,140],... [Pg.104]

Amphiphilic block copolymers of SCB and methacrylic acid (and methacrylic acid derivatives) with narrow molecular weight distribution can be synthesized by sequential addition of 1,1-diphenylethylene and methacrylate or its derivatives to living poly(silacyclobutane) in the presence of lithium chloride (Scheme 12) <2001PSA86, 1998PSA2699, 1999MM6088>. [Pg.525]

Antitumor activity of various organogermanium sesquioxanes [(Oi.5GeCH2CHRCOX) , R=H, Me X = OH, NH2]100 and sesquisulfides112 has been studied. The most active was a methacrylic acid derivative (80% life prolongation in melanoma B16 and 72% life prolongation in mice with Lewis lung carcinoma). [Pg.1671]

Deoxygenation of cyclic peroxides.3 ot-Methylene-p-lactones (3) have been obtained for the first time by deoxygenation with (C6H,)3P of the a-methylene-p-peroxylactones (2) obtained by photosensitized oxygenation of methacrylic acid derivatives (1). [Pg.243]

In another method Gramain and Frere 34 reacted Polyoxyethylene monomethyl ether with methacryloyl chloride under various experimental conditions. The reaction was carried out in the presence of a tertiary amine and yielded the expected macromonomers. Care was taken to avoid two possible side reactions, namely addition of HC1 to the double bond, and polymerization of the methacrylic acid derivatives. Applying appropriate reaction conditions, the authors obtained oo-methacryloyl PEO macromonomers quantitatively. [Pg.15]

Epoxy acrylate resins or vinyl esters are made from the esterification of epoxy resin via their terminal group with an unsaturated acid, such as methacrylic acid derived from epoxy resin. A typical reaction sequence is illustrated in Fig. 4.3. The resultant polymer is usually dissolved in a reactive monomer such as styrene. [Pg.82]


See other pages where Acid derivative, methacrylic is mentioned: [Pg.14]    [Pg.58]    [Pg.72]    [Pg.13]    [Pg.82]    [Pg.638]    [Pg.735]    [Pg.816]    [Pg.32]    [Pg.139]    [Pg.517]    [Pg.368]    [Pg.81]    [Pg.3]    [Pg.818]    [Pg.30]    [Pg.336]    [Pg.54]    [Pg.54]    [Pg.121]    [Pg.136]    [Pg.745]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Acids methacrylic acid

Methacrylate derivatives

Methacrylic acid

Methacrylic acid and derivatives

Methacrylic acid methacrylate

© 2024 chempedia.info