Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylates, polymeric

The tetranuclear structure observed for basic zinc/acetate/[Zn40(02CCH3)6] is also observed for basic zinc pivalate and benzoate. Solution studies showed an equilibrium between hydrated basic structures and the hydrated form of 3,1 bridging structures in the presence of a trace amount of water. Zinc crotonate shows a less common basic carboxylate polymeric structure, [Zn5(OH)2 (02CCHCHCH3)8]n.369... [Pg.1176]

Cyclic ethers are substrates of great interest as sources of cyclic monomeric carbonates or even as co-monomers for the production of polymers through ringopening carboxylative polymerization. Their reactivity is driven by different parameters, such as ... [Pg.216]

The latter case (the ultimate product is attached to the polymer) is illustrated by the use of a polymeric sulfonyl chloride for the preparation of carboxylated polymeric nitrophenol (Scheme 43). ... [Pg.813]

Aqueous caprolactam is polymerized alone and in the presence of sebacic acid (S) or hexamethylenediamine (H).t After a 24-hr reaction time, the polymer is isolated and the end groups are analyzed by titrating the carboxyl groups with KOH in benzyl alcohol and the amino groups with p-toluenesulfonic acid in trifluoroethanol. The number of milliequivalents of carboxyl group per mole caprolactam converted to polymer, [A ], and the number of milliequivalents of amino groups per mole caprolactam converted to polymer, [B ], are given below for three different runs ... [Pg.32]

One of the most sensitive tests of the dependence of chemical reactivity on the size of the reacting molecules is the comparison of the rates of reaction for compounds which are members of a homologous series with different chain lengths. Studies by Flory and others on the rates of esterification and saponification of esters were the first investigations conducted to clarify the dependence of reactivity on molecular size. The rate constants for these reactions are observed to converge quite rapidly to a constant value which is independent of molecular size, after an initial dependence on molecular size for small molecules. The effect is reminiscent of the discussion on the uniqueness of end groups in connection with Example 1.1. In the esterification of carboxylic acids, for example, the rate constants are different for acetic, propionic, and butyric acids, but constant for carboxyUc acids with 4-18 carbon atoms. This observation on nonpolymeric compounds has been generalized to apply to polymerization reactions as well. The latter are subject to several complications which are not involved in the study of simple model compounds, but when these complications are properly considered, the independence of reactivity on molecular size has been repeatedly verified. [Pg.278]

As with polyesters, the amidation reaction of acid chlorides may be carried out in solution because of the enhanced reactivity of acid chlorides compared with carboxylic acids. A technique known as interfacial polymerization has been employed for the formation of polyamides and other step-growth polymers, including polyesters, polyurethanes, and polycarbonates. In this method the polymerization is carried out at the interface between two immiscible solutions, one of which contains one of the dissolved reactants, while the second monomer is dissolved in the other. Figure 5.7 shows a polyamide film forming at the interface between an aqueous solution of a diamine layered on a solution of a diacid chloride in an organic solvent. In this form interfacial polymerization is part of the standard repertoire of chemical demonstrations. It is sometimes called the nylon rope trick because of the filament of nylon produced by withdrawing the collapsed film. [Pg.307]

The kinds of vinyl monomers which undergo anionic polymerization are those with electron-withdrawing substituents such as the nitrile, carboxyl, and phenyl groups. We represent the catalysts as AB in this discussion these are substances which break into a cation (A ) and an anion (B ) under the conditions of the reaction. In anionic polymerization it is the basic anion which adds across the double bond of the monomer to form the active center for polymerization ... [Pg.404]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Carboxylic Acid Functional Group Reactions. Polymerization is avoided by conducting the desired reaction under mild conditions and in the presence of polymeriza tion inhibitors. AcryUc acid undergoes the reactions of carboxyUc acids and can be easily converted to salts, acryhc anhydride, acryloyl chloride, and esters (16—17). [Pg.150]

The boric and sulfuric acids are recycled to a HBF solution by reaction with CaF2. As a strong acid, fluoroboric acid is frequently used as an acid catalyst, eg, in synthesizing mixed polyol esters (29). This process provides an inexpensive route to confectioner s hard-butter compositions which are substitutes for cocoa butter in chocolate candies (see Chocolate and cocoa). Epichlorohydrin is polymerized in the presence of HBF for eventual conversion to polyglycidyl ethers (30) (see Chlorohydrins). A more concentrated solution, 61—71% HBF, catalyzes the addition of CO and water to olefins under pressure to form neo acids (31) (see Carboxylic acids). [Pg.165]

Replacement of Labile Chlorines. When PVC is manufactured, competing reactions to the normal head-to-tail free-radical polymerization can sometimes take place. These side reactions are few ia number yet their presence ia the finished resin can be devastating. These abnormal stmctures have weakened carbon—chlorine bonds and are more susceptible to certain displacement reactions than are the normal PVC carbon—chlorine bonds. Carboxylate and mercaptide salts of certain metals, particularly organotin, zinc, cadmium, and antimony, attack these labile chlorine sites and replace them with a more thermally stable C—O or C—S bound ligand. These electrophilic metal centers can readily coordinate with the electronegative polarized chlorine atoms found at sites similar to stmctures (3—6). [Pg.546]

Three generations of latices as characterized by the type of surfactant used in manufacture have been defined (53). The first generation includes latices made with conventional (/) anionic surfactants like fatty acid soaps, alkyl carboxylates, alkyl sulfates, and alkyl sulfonates (54) (2) nonionic surfactants like poly(ethylene oxide) or poly(vinyl alcohol) used to improve freeze—thaw and shear stabiUty and (J) cationic surfactants like amines, nitriles, and other nitrogen bases, rarely used because of incompatibiUty problems. Portiand cement latex modifiers are one example where cationic surfactants are used. Anionic surfactants yield smaller particles than nonionic surfactants (55). Often a combination of anionic surfactants or anionic and nonionic surfactants are used to provide improved stabiUty. The stabilizing abiUty of anionic fatty acid soaps diminishes at lower pH as the soaps revert to their acids. First-generation latices also suffer from the presence of soap on the polymer particles at the end of the polymerization. Steam and vacuum stripping methods are often used to remove the soap and unreacted monomer from the final product (56). [Pg.25]

Other Organolithium Compounds. Organoddithium compounds have utiHty in anionic polymerization of butadiene and styrene. The lithium chain ends can then be converted to useflil functional groups, eg, carboxyl, hydroxyl, etc (139). Lewis bases are requHed for solubdity in hydrocarbon solvents. [Pg.229]

Almost all synthetic binders are prepared by an emulsion polymerization process and are suppHed as latexes which consist of 48—52 wt % polymer dispersed in water (101). The largest-volume binder is styrene—butadiene copolymer [9003-55-8] (SBR) latex. Most SBRlatexes are carboxylated, ie, they contain copolymerized acidic monomers. Other latex binders are based on poly(vinyl acetate) [9003-20-7] and on polymers of acrylate esters. Poly(vinyl alcohol) is a water-soluble, synthetic biader which is prepared by the hydrolysis of poly(viayl acetate) (see Latex technology Vinyl polymers). [Pg.22]

These association reactions can be controlled. Acetone or acetonylacetone added to the solution of the polymeric electron acceptor prevents insolubilization, which takes place immediately upon the removal of the ketone. A second method of insolubiUzation control consists of blocking the carboxyl groups with inorganic cations, ie, the formation of the sodium or ammonium salt of poly(acryhc acid). Mixtures of poly(ethylene oxide) solutions with solutions of such salts can be precipitated by acidification. [Pg.342]

The carboxyl group reacts with metal oxides, hydroxides, or salts to form rosin soaps or salts (resinates). The soaps of alkah metals, such as sodium and potassium, are usehil in paper sizing and as emulsifiers in mbber polymerization. [Pg.139]

Sorbic acid is oxidized rapidly in the presence of molecular oxygen or peroxide compounds. The decomposition products indicate that the double bond farthest from the carboxyl group is oxidized (11). More complete oxidation leads to acetaldehyde, acetic acid, fumaraldehyde, fumaric acid, and polymeric products. Sorbic acid undergoes Diels-Alder reactions with many dienophiles and undergoes self-dimerization, which leads to eight possible isomeric Diels-Alder stmctures (12). [Pg.282]


See other pages where Carboxylates, polymeric is mentioned: [Pg.226]    [Pg.142]    [Pg.142]    [Pg.538]    [Pg.221]    [Pg.226]    [Pg.142]    [Pg.142]    [Pg.538]    [Pg.221]    [Pg.412]    [Pg.268]    [Pg.307]    [Pg.339]    [Pg.144]    [Pg.264]    [Pg.378]    [Pg.1053]    [Pg.1054]    [Pg.1056]    [Pg.317]    [Pg.318]    [Pg.328]    [Pg.241]    [Pg.11]    [Pg.210]    [Pg.223]    [Pg.224]    [Pg.257]    [Pg.295]    [Pg.437]    [Pg.480]    [Pg.35]    [Pg.37]    [Pg.256]    [Pg.159]    [Pg.220]   


SEARCH



Asymmetric Polymerization of Carboxylic Acid Derivatives

Carboxylic membranes polymerization

Polymerization continued) carboxyl groups, effect

Polymerization of Achiral Carboxylic Acid Derivatives

Polymerization unsaturated carboxylic acids

Polymerization without Carboxylic Acid Additives

Ring-opening carboxylative polymerization

The Synthesis of Linear Polymeric Esters from Cyclic Trimethylene Acetals and Dibasic Carboxylic Acids

© 2024 chempedia.info