Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylene vinyl chloride process

Ethyne is the starting point for the manufacture of a wide range of chemicals, amongst which the most important are acrylonitrile, vinyl chloride, vinyl acetate, ethanal, ethanoic acid, tri- and perchloro-ethylene, neoprene and polyvinyl alcohol. Processes such as vinylation, ethinylation, carbonylation, oligomerization and Reppe processes offer the possibility of producing various organic chemicals cheaply. Used in oxy-acetylene welding. [Pg.169]

Once the principal route to vinyl chloride, in all but a few percent of current U.S. capacity this has been replaced by dehydrochlorination of ethylene dichloride. A combined process in which hydrogen chloride cracked from ethylene dichloride was added to acetylene was advantageous but it is rarely used because processes to oxidize hydrogen chloride to chlorine with air or oxygen are cheaper (7) (see Vinyl polymers). [Pg.102]

The principal chemical markets for acetylene at present are its uses in the preparation of vinyl chloride, vinyl acetate, and 1,4-butanediol. Polymers from these monomers reach the consumer in the form of surface coatings (paints, films, sheets, or textiles), containers, pipe, electrical wire insulation, adhesives, and many other products which total biUions of kg. The acetylene routes to these monomers were once dominant but have been largely displaced by newer processes based on olefinic starting materials. [Pg.393]

Although a small fraction of the world s vinyl chloride capacity is stiU based on acetylene or mixed actylene—ethylene feedstocks, nearly all production is conducted by the balanced process based on ethylene and chlorine (75). The reactions for each of the component processes are shown in equations 1—3 and the overall reaction is given by equation 4 ... [Pg.415]

Alternatives to oxychlorination have also been proposed as part of a balanced VCM plant. In the past, many vinyl chloride manufacturers used a balanced ethylene—acetylene process for a brief period prior to the commercialization of oxychlorination technology. Addition of HCl to acetylene was used instead of ethylene oxychlorination to consume the HCl made in EDC pyrolysis. Since the 1950s, the relative costs of ethylene and acetylene have made this route economically unattractive. Another alternative is HCl oxidation to chlorine, which can subsequently be used in dkect chlorination (131). The SheU-Deacon (132), Kel-Chlor (133), and MT-Chlor (134) processes, as well as a process recently developed at the University of Southern California (135) are among the available commercial HCl oxidation technologies. Each has had very limited industrial appHcation, perhaps because the equiHbrium reaction is incomplete and the mixture of HCl, O2, CI2, and water presents very challenging separation, purification, and handling requkements. HCl oxidation does not compare favorably with oxychlorination because it also requkes twice the dkect chlorination capacity for a balanced vinyl chloride plant. Consequently, it is doubtful that it will ever displace oxychlorination in the production of vinyl chloride by the balanced ethylene process. [Pg.422]

These processes have supplanted the condensation reaction of ethanol, carbon monoxide, and acetylene as the principal method of generating ethyl acrylate [140-88-5] (333). Acidic catalysts, particularly sulfuric acid (334—338), are generally effective in increasing the rates of the esterification reactions. Care is taken to avoid excessive polymerisation losses of both acryflc acid and the esters, which are accentuated by the presence of strong acid catalysts. A synthesis for acryflc esters from vinyl chloride (339) has also been examined. [Pg.415]

Halogenation and dehalogenation are catalyzed by substances that exist in more than one valence state and are able to donate and accept halogens freely. Silver and copper hahdes are used for gas-phase reactions, and ferric chloride commonly for hquid phase. Hydrochlorination (the absoration of HCl) is promoted by BiCb or SbCl3 and hydrofluorination by sodium fluoride or chromia catalysts that form fluorides under reaction conditions. Mercuric chloride promotes addition of HCl to acetylene to make vinyl chloride. Oxychlori-nation in the Stauffer process for vinyl chloride from ethylene is catalyzed by CuCL with some KCl to retard its vaporization. [Pg.2094]

However, ethylene as a cheap raw material has replaced acetylene for obtaining vinyl chloride. The production of vinyl chloride via ethylene is a three-step process. The first step is the direct chlorination of ethylene to produce ethylene dichloride. Either a liquid- or a vapor-phase process is used ... [Pg.202]

On November 8, 2000, U.S. EPA listed as hazardous two wastes generated by the chlorinated aliphatics industry.18 The two wastes are wastewater treatment sludges from the production of ethylene dichloride or vinyl chloride monomer (EDC/VCM), and wastewater treatment sludges from the production of vinyl chloride monomer using mercuric chloride catalyst in an acetylene-based process. [Pg.516]

Some chemicals are susceptible to peroxide formation in the presence of air [10, 56]. Table 2.15 shows a list of structures that can form peroxides. The peroxide formation is normally a slow process. However, highly unstable peroxide products can be formed which can cause an explosion. Some of the chemicals whose structures are shown form explosive peroxides even without a significant concentration (e.g., isopropyl ether, divinyl acetylene, vinylidene chloride, potassium metal, sodium amide). Other substances form a hazardous peroxide on concentration, such as diethyl ether, tetrahydrofuran, and vinyl ethers, or on initiation of a polymerization (e.g., methyl acrylate and styrene) [66]. [Pg.49]

The original rnanufacturing route to vinyl chloride (VC) didn t involve ethylene dichloride (EDC) but was the reaction of acetylene with hydrochloric acid. This process was commercialized in the 1940s, but like most acetylene-based chemistry in the United States, it gave way to ethylene in the 1950s and 1960s. The highly reactive acetylene molecule was more sensitive, hazardous,... [Pg.135]

Originally, vinyl chloride polymers were based on acetylene. The switch to ethylene,chemistry came after the development of the oxychlorination process for vinyl chloride described in Chapter 9. Today very little acetylene-, based vinyl chloride monomer (VCM) processing remains. [Pg.348]

Vinyl chloride, formerly obtained from acetylene, is now produced by the transcatalytic process where chlorination of ethylene, oxychlorination of the by-product hydrogen chloride, and dehydrochlorination occur in a single reactor. [Pg.537]

Thus, exposure to any of these enzyme inducers concurrent with or after exposure to diazinon may result in accelerated bioactivation to the more potent anticholinesterase diazoxon. The extent of toxicity mediated by this phenomenon is dependent on how fast diazoxon is hydrolyzed to less toxic metabolites, a process that is also accelerated by the enzyme induction. Similarly, concurrent exposure to diazinon and MFO enzyme-inhibiting substances (e.g., carbon monoxide ethylisocyanide SKF 525A, halogenated alkanes, such as CC14 alkenes, such as vinyl chloride and allelic and acetylenic derivatives) may increase the toxicity of diazinon by decreasing the rate of the hydrolytic dealkylation and hydrolysis of both parent diazinon and activated diazinon (diazoxon) (Williams and Burson 1985). The balance between activation and detoxification determines the biological significance of these chemical interactions with diazinon. [Pg.108]

A competing process produces vinyl chloride from acetylene, which also can be derived from petroleum feed stocks but is usually made from calcium carbide. It has been estimated (17) that 45% of current production of vinyl chloride is from ethylene, the remainder from acetylene. [Pg.313]

Another major chlorinated hydrocarbon is vinyl chloride. For many years acetylene was the sole raw material for the production of vinyl chloride by a catalytic fixed bed vapor-phase process. This process is characterized by high yields and modest capital investment. Nevertheless, the high relative cost of acetylene provided an incentive to replace it in whole or in part by ethylene. The first step in this direction was the concurrent use of both raw materials. Ethylene was chlorinated to di-chloroethane, and the hydrogen chloride derived from the subsequent dehydrochlorination reacted with acetylene to form additional vinyl chloride. [Pg.160]

Demonstration of the technical feasibility of producing mixtures of acetylene and ethylene by pyrolysis of hydrocarbons (Wulff process or Kureha process) has led to the manufacture of vinyl chloride from such mixtures. The acetylene component reacts selectively with hydrogen chloride to form vinyl chloride, the residual ethylene is converted to dichloroethane, and the latter is cracked to vinyl chloride, with the resulting hydrogen chloride being recycled. However, this type of process has not achieved the industrial importance of the all-ethylene type of process. [Pg.160]

Technological advances in the production of the vinyl chloride monomer (VCM) have contributed to the declining price of the polymer. Figure 4 illustrates this statement the price of the vinyl chloride monomer (1) over a period of 20 years is plotted against two curves that represent the annual production of monomer made from two different bases, acetylene and ethylene. The classic acetylene route was the first to be exploited commercially, but its popularity has declined as more processes were developed that could utilize ethylene, a cheaper base. [Pg.196]

This process is shown schematically in Figure 7. The ethylene part of the feed reacts with chlorine in the liquid phase to produce 1,2-di-chloroethane (EDC) by a simple addition reaction, in the presence of a ferric chloride catalyst (9). Thermal dehydrochlorination, or cracking, of the intermediate EDC then produces the vinyl chloride monomer and by-product HC1 (1). Acetylene is still needed as the other part of the over-all feed, to react with this by-product HC1 and produce VCM as in the all-acetylene route. [Pg.198]

The current trend for vinyl chloride monomers is toward ethylene as the hydrocarbon raw material, replacing electrochemical acetylene, and it promises to continue. Electrochemical acetylene will be phased out almost completely, except in special cases. The high activation energy level required for forming the acetylene triple bond precludes design of a low cost process for its formation. In addition, the difficulties encountered in handling such a highly reactive material will deter its use. [Pg.202]

POLYVINYL CHLORIDE (PVC). [CAS 9002-86-2], The manufacture of polyvinyl chloride resins commences with the monomer, vinyl chloride, which is a gas, shipped and stored under pressure to keep it in a liquid state bp —14°C, fp —160°C, density (20°C), 0.91. The monomer is produced by the reaction of hydrochloric acid with acetylene. This reaction can be carried out in eidier a liquid or gaseous state. In another technique, ethylene is reacted with chlorine to produce ethylene dichloride. This is then cataiytically dehydrohalogcnatcd to produce vinyl chloride. The byproduct is hydrogen chloride. A later process, oxychlorination, permits the regeneration of chlorine from HC1 for recycle to the process. [Pg.1356]

Pyrolysis. Vinyl chloride is more stable than saturated ehloroalkanes to thermal pyrolysis. That is why nearly all vmyl chlonde made commercially comes from thermal clehydrochlorination of ethylene dichloride (EDC). When vinyl chloride is heated to 450°C, only small amounts of acetylene form. Decomposition of vinyl chlonde via a free-radical chain process begins at approximately 550°C, and increases with increasing temperature. Acetylene, HC1. chloropiene, and vinylacetylene are formed in about 35% total yield at 680°C. At higher temperatures, tar and soot formation becomes increasingly important. When dry and in contact with metals, vinyl chloride does not decompose below 450°C. However, if water is present, vinyl chloride can corrode iron, steel, and alum in 11m because ofthe presence of trace amounts of HC1. This HC1 may result from the hydrolysis of the peroxide formed between oxygen and vinyl chlonde. [Pg.1683]

Other methods are described in Reference 61, however, the commercial process for the synthesis of vinyl fluoride is not described in the literature for proprietary reasons.61 Addition of HF to acetylene and fluorination of vinyl chloride are the most likely industrial routes to the production of VF.62... [Pg.24]


See other pages where Acetylene vinyl chloride process is mentioned: [Pg.119]    [Pg.283]    [Pg.393]    [Pg.444]    [Pg.413]    [Pg.415]    [Pg.415]    [Pg.314]    [Pg.232]    [Pg.102]    [Pg.9]    [Pg.312]    [Pg.317]    [Pg.324]    [Pg.664]    [Pg.332]    [Pg.157]    [Pg.836]    [Pg.1683]    [Pg.30]    [Pg.1]    [Pg.413]    [Pg.415]    [Pg.415]   
See also in sourсe #XX -- [ Pg.168 , Pg.169 , Pg.172 ]




SEARCH



Acetylene chloride

Chloride process

Vinyl chloride

Vinyl chloride acetylene

Vinylic chlorides

© 2024 chempedia.info